Lecture 3: Information Retrieval

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 3

What we'll learn today

- How to take a user query and return a ranked list of results
- How implement this operation in a reasonably efficient way
- How to automatically expand the query by adding synonyms and related words

Reviewing: document similarity in VSM

- Document is BOW
- Project into term space as vector, with dimension lengths given by TF*IDF
- Calculate document similarity as cosine of angle between their vectors

Implement as dot product on unit-length vectors

Same process can be used to *rank* documents by decreasing similarity to given document.

Query processing in VSM

- Treat the query as a (short) (pseudo-)document
- Calculate (VSM cosine) similarity between query pseudo-document and each document in collection
- Rank documents by decreasing similarity with query
- Return to user in rank order (generally only top results initially)

Index

- In last week's worksheet, every time we ran a similarity computation, we recalculated unit-length TF*IDF vectors for all documents.
- Since these do not change from query to query, save processing by precalculating and store results in an index.
- But we still need to iterate through all documents to rank by similarity.

• This an O(|D|) operation.

Term-wise processing

- In document similarity, only terms occurring in both documents contribute to cosine score (remember the dot-product!)
- In query processing by pseudo-document model, therefore, only documents that contain query terms need to be considered (which makes intuitive sense)
- Complexity reduced to $O(\max df_t)$
 - Note: because Zipfian distribution, most frequent term dominates.
 - Very good reason to drop stop-words!
- Need an index that supports quickly finding which documents a term occurs in

Inverted index

Index designed to support query processing:

- Keys are terms
- Values are lists of $\langle d, w_{t,d} \rangle$ pairs
- Each $\langle d, w_{t_d} \rangle$ pair called a *posting*
- List of these called a postings list

Term		Postings list
tea	\rightarrow	1:1.4; $3:1.0$; $6:1.7$;
two	\rightarrow	2:2.3 ; 3:1.0 ; 4:1.7 ;
me	\rightarrow	1:1.0 ; 2:1.4 ;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Query processing on inverted index

For each term *t* in query:

- Load postings list for t
- For each posting $\langle d, w_{t_d} \rangle$ in list:

$$\blacktriangleright a_d \mathrel{+}= w_{t_d}$$

- Sort documents by decreasing a_d
- Return sorted results to user

NOTE: there are a lot of efficiency optimizations that we won't go into here!

 $^{^{1}}a_{d}$ is called an "accumulator"

Tweaking the formula

- Previous algorithm does not precisely calculate cosine distance between pseudo-document and documents, as:
 - IDF
 - $\blacktriangleright \log(1+f_{q,t})$
 - Unit-length normalization

not applied

- Unit-length normalization doesn't matter to query processing (why not?), but other can
- In fact, many of formula component choices made here (e.g. TF = log(f_{d,t} + 1) vs. TF = f_{d,t}) are heuristic (as is the VSM model itself)
 - ➤ Zobel and Moffat, "Exploring the Similarity Space" (1998) identify (8 × 9 × 2 × 6 × 14) = 12096 possible different combinations of choices
- Once can try different variants to improve effectiveness
- (We'll talk next lecture about how to test success)

Alternative document length normalization

- To date, normalized document vectors to unit length
- But is this correct?
 - Very short documents will get high scores for term occurrences
 - Long documents may cover many topics, satisfy many queries

Empirical adjustment

Assume that we have:

- Large number of queries
- Judgments of which documents are relevant to which queries

Then we can compare:

- Probability of document being retrieved given length
- Probability of document being relevant given length

and adjust if these two probabilities are out of line

Probability retrieved v. relevant given length

Amit Singhal, Chris Buckley, and Mandar Mitra, "Pivoted Document Length Normalization", SIGIR 1996

<ロ> (四) (四) (三) (三) (三) (三)

Probability retrieved v. relevant given length

Document Length

Amit Singhal, Chris Buckley, and Mandar Mitra, "Pivoted Document Length Normalization", SIGIR 1996

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Probability retrieved v. relevant given length

Old Normalization Factor

- Look at mean empirical relation
- Simplify and identify "pivot". Lengths greater than pivot point should be boosted; less, decreased
- Linearly approximate to "slope"

Amit Singhal, Chris Buckley, and Mandar Mitra, "Pivoted Document Length Normalization", SIGIR 1996

Pivoted document length normalization

w weight of term in document (e.g. TF*IDF)

- n_u original normalization (e.g. unit-length normalization by length of document vector)
 - p pivot point for pivot normalization
 - s slope of pivot normalization
- w_p pivot-normalized weight of term

$$w_p = \frac{w}{(1.0-s) \cdot p + s \cdot n_u} \tag{1}$$

- Various approximations and factors (see Singhal et al.)
- Note that we are no longer calculating cosine distance, but pseudo-cosine distance!
- Require dataset to tune on, and will be tuned to that dataset
- Gives significant improvement in effectiveness

Looking back and forward

Back

- Queries can be processing in VSM by treating query as (pseudo-)document
- Inverted index supports efficient query processing
- Various tweaks to VSM formulae possible, of which pivoted document length normalization empirically the most effective

Looking back and forward

Forward

- Queries short, possible ambiguous; can be expanded by finding similar terms (next lecture)
- In following lecture, will look at evaluation of IR methods, for selecting methods and tuning parameters
- Later, we will look at probabilistic methods, that present themselves as more theoretically grounded, requiring fewer heuristic "hacks"

Further reading

- Chapter 2, "The term vocabulary and postings lists"², from Section 2 onwards, of Manning, Raghavan, and Schutze, *Introduction to Information Retrieval* (more advanced methods for postings lists)
- Justin Zobel and Alistair Moffat, "Inverted files for text search engines"³, ACM Computing Surveys, 2006 (authoritative survey paper on inverted indexes by pioneers in their optimization, who happen to be UniMelb professors)
- Singhal, Buckley, and Mitra, "Pivoted document length normalization"⁴, SIGIR, 1996 (introduced pivoted DLN; first author is now head of search engineering at Google)

²http://nlp.stanford.edu/IR-book/pdf/02voc.pdf
³http://www.cs.mu.oz.au/~jz/fulltext/compsurv06.pdf
⁴http://singhal.info/pivoted-dln.pdf