
Lecture 4: Query Expansion

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 4

What we’ll learn today

I How to find “similar” terms to a given term in a collection

I How to expand a query to overcome the ambiguity in human
language

Query narrowness and ambiguity

“motorbike” Will miss references to “motorcycles”

“java” Island, coffee, or programming language?

“vehicle theft” Motorbike, car, truck theft?

Inexactness of human language

Human language is inexact:

synonym Different words, one concept (“cab” vs “taxi”)

homonym One word, different concepts (“jaguar” car, animal)

hyponym Generalization (“cat” → “animal”)

hypernym Specialization (“athlete” → “sprinter”)

meronym Part of whole (“car” → “wheel”)

holonym Whole for part (“Germany” → “Europe”)

Also mispellings, foreign languages, slang etc..

Clarifying queries: possibilities

I Suggest additional or clarifying terms to user
I [java] → ([java indonesia] | [java coffee] | [java programming])?
I Often done by finding clarifying co-occurring terms or phrases

I Add synonyms and other -nyms directly to query:
I [cat] → [cat feline jaguar animal puss . . .]

I Add associated non-nyms to help weight results:
I [olympics] → [medal record sochi champion torch . . .]

I Allow user to “explore the term space”, discover vocabulary of
collection

Clarifying queries: manual thesaurus

Could use external, curated thesaurus (Roget’s, WordNet 3.1)

car → vehicle; automobile, truck, trailer, bus, taxi . . .

java → coffee; chicken; island

crimea → ???

I Reasonable for generic concept words

I Quickly outdated; poor for names; poor for associated words

I Expensive to maintain (huge effort for Wordnet, now obsolete)

(If you’re going down this route, use Wikipedia!)

Automatic thesaurus

I Build an automatic thesaurus by finding “similar” terms in
collection

I Term similarity can be defined analogously to document
similarity using the Term-Document Matrix:

Document similarity Two documents are similar if they are
close to each other in term space

Term similarity Two terms are similar if they are close to each
other in document space

Question
What does it mean for two terms to be “near” each other in
document space?

Transformations for term frequency calculations

I What is the equivalent of “inverse document frequency”? Is it
a useful transformation?

I What is the equivalent of “document-length normalization”?
Do we want to do this?

Unit-normalized term similarity formula

fd ,t frequency of term t in document d

D set of documents

nt =
(∑
d∈D

f 2d ,t
)1/2

(1)

wd ,t =
fd ,t
nt

(2)

simu(t1, t2) =
∑
d∈D

wd ,t1 · wd ,t2 (3)

I Calculate distance between terms as cosine

I With unit-normalized vectors

Unit-normalized (cosine) distance

Term “Similar” terms

socc tabulat, match, cup, goal, club, play, leag, halftim,
goalkeep, internazional, divid, draw, scor, stand,
turnstil . . .

jaguar seahawk, rotons, precip, luckey, touchdown, dol-
phin, quarterback, redskin, harbaugh, chevrolet,
porsch, xk8, throwaway, terrel . . .

najibullah lafrai, murtaz, ivgin, seh, darulam, tajik, kart, arg-
hand, sarmad, mikhailov, tajikist, rocket, afgh,
frontlin, invit . . .

I Tends to through up very rare suggestions, especially for rare
terms

I Why?

LYRL 30k collection

Normalized cosine term similarity
Document (ft,d)

Term d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 nt

ivgin 0 1 0 0 0 0 0 0 0 0 1.0
najibullah 0 2 0 1 1 0 1 0 1 1 3.0
afghanist 2 0 1 1 0 1 1 0 0 1 3.0

Document (wt,d)

Term d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

ivgin 0 1 0 0 0 0 0 0 0 0
najibullah 0 2/3 0 1/3 1/3 0 1/3 0 1/3 1/3
afghanist 2/3 0 1/3 1/3 0 1/3 1/3 0 0 1/3

simu(najibullah, ivgin) = 0.66 (4)

simu(najibullah, afghanist) = 0.331 (5)

I Length norm places heavy weight on singleton occurrences

I Why is this not (so bad) a problem with documents?
1Incorrectly 0.44 in original

Term similarity: raw frequencies

I “Try” working with raw frequencies, instead of normalized
ones

I Note: though the computation is similar (dot product), we are
not calculated cosine or any direct geometric distance

I (Anyone know the geometric interpretation of the dot product
of two unnormalized vectors?)

Term similarity: frequency formula

t1, t2 The terms we wish to compare

fd ,t Number of occurences of term t in document d

D Set of all documents in collection

simf (t1, t2) =
∑
d∈D

fd ,t1 · fd ,t2 (6)

Implementation note

I Only need to consider documents that both terms occur in.

I Can be computed on inverted index postings list

I Finding “most similar” term requires traversing full vocabulary

Question
What types of terms are we biasing towards by using “raw” TF
scores?

Term similarities with frequency formulae

Term “Similar” terms

socc play, match, goal, cup, leagu, club, scor, divid,
minut, result, game, year, win, team, champ . . .

jaguar car, percent, sale, year, yard, touchdown, quart,
motor, vehicl, unit, britain, pass, august, million,
market . . .

najibullah govern, taleb, kabul, afgh, minist, rocket, for-
eign, tajik, kill, invit, radio, islam, fight, confer,
afghanist . . .

I Can throw up words that are globally frequent, but not topical

I More tweaking needs to be done . . .

What is “similar”

Term “Similar” terms

socc play, match, goal, cup, leagu, club, scor, divid,
minut, result, game, year, win, team, champ . . .

I What sort of “similar” terms are being found? And not found?

I Obvious synonym of “soccer” not found

I Why is this “similarity” bad at finding synonyms?

I Because synonyms rarely appear in same document (why?)

I Will expanding this way still help find documents with
synonyms?

I Yes, because co-occurring words will tend to occur with
synonym

What is “similar”

Term “Similar” terms

socc play, match, goal, cup, leagu, club, scor, divid,
minut, result, game, year, win, team, champ . . .

I What sort of “similar” terms are being found? And not found?

I Obvious synonym of “soccer” not found

I Why is this “similarity” bad at finding synonyms?

I Because synonyms rarely appear in same document (why?)

I Will expanding this way still help find documents with
synonyms?

I Yes, because co-occurring words will tend to occur with
synonym

What is “similar”

Term “Similar” terms

socc play, match, goal, cup, leagu, club, scor, divid,
minut, result, game, year, win, team, champ . . .

I What sort of “similar” terms are being found? And not found?

I Obvious synonym of “soccer” not found

I Why is this “similarity” bad at finding synonyms?

I Because synonyms rarely appear in same document (why?)

I Will expanding this way still help find documents with
synonyms?

I Yes, because co-occurring words will tend to occur with
synonym

What is “similar”

Term “Similar” terms

socc play, match, goal, cup, leagu, club, scor, divid,
minut, result, game, year, win, team, champ . . .

I What sort of “similar” terms are being found? And not found?

I Obvious synonym of “soccer” not found

I Why is this “similarity” bad at finding synonyms?

I Because synonyms rarely appear in same document (why?)

I Will expanding this way still help find documents with
synonyms?

I Yes, because co-occurring words will tend to occur with
synonym

Individually expanding query terms

I Say query is [swing buttons]

I We might add [slide playground child kindergarten] for
“swing”

I We might add [sewing repair shirt trouser] for “buttons”

I Would query [swing buttons slide playground child
kindergarten sewing repair shirt trouser] help user find what
they want?

I Expanding terms independently, irrespective of their joint
connotation, is dangerous!

Individually expanding query terms

I Say query is [swing buttons]

I We might add [slide playground child kindergarten] for
“swing”

I We might add [sewing repair shirt trouser] for “buttons”

I Would query [swing buttons slide playground child
kindergarten sewing repair shirt trouser] help user find what
they want?

I Expanding terms independently, irrespective of their joint
connotation, is dangerous!

Local expansion through automatic feedback

I How do we find co-occurring terms in important documents
that query terms co-occur in?

I Well, query processing itself finds (hopefully) important
documents that query terms co-occur in

I So we can look in the query results themselves for expansion
terms

I This known as “pseudo-relevance feedback” (PRF)
I In “true relevance feedback”, the user marks retrieved

documents as relevant or irrelevant
I Terms in relevant documents get positive weight, in irrelevant

negative
I This akin to text classification (which we’ll talk about later)
I PRF is “pseudo” because we “assume all results are relevant”

Query expansion through automatic feedback

I Run original query against index

I Take top-ranking result documents
I Extract (weighted) terms from results and add them to query

I (or enhance the query pseudo-document vector)

I Run expanded query against index

I Return results to user

Several algorithms for doing this; we’ll look at one from 1970 (!)

Rocchio’s algorithm for PRF

de = αq0 + β
1

|Dr |
∑
di∈Dr

di (7)

q0 Original query vector

Dr Set of result documents

α, β Weights

qe Expanded query vector

I α, β set by “intuition”

I . . . or tuned by experimentation

Rocchio’s PRF algorithm illustrated

Document (wt,d)

(Ps-)doc “taxi” “cab” “hail” “tea” “two” Total

d1 0.7 0.0 0.7 0.0 0.0
d2 0.0 0.7 0.7 0.0 0.0
d3 0.05 0.0 0.0 0.65 0.7

(qry) 1.0 0.0 0.0 0.0 0.0
q • d3 0.05 0.0 0.0 0.0 0.0 0.05

(exp) 0.85 0.0 0.35 0.0 0.0

e • d3 0.04 0.0 0.0 0.0 0.0 0.04
e • d2 0.0 0.0 0.25 0.0 0.0 0.25

I Query [taxi]

I Result ranking: 〈 d1, d3, d2 〉
I Expand with top result, α = β = 0.5

I Submit expanded query

I Result ranking: 〈 d1, d2, d3 〉

Query expansion in practice

I Suggestion / expansion by raw term similarity not widely used
I Latent Semantic Analysis a preferred method (see later)
I Co-occurring noun phrases can give better suggestions

I Pseudo-relevance feedback:
I Gives moderate average gain (but makes some queries worse)
I Quite expensive (involves processing large expanded queries)
I Cost–benefit tradeoff not justified for web-scale search

I Query suggestion actually done by search log mining:
I See how people reformulate queries
I . . . and suggest these reformulations to others
I (Also how spelling correction is done)
I (Hopefully, will have time to look at automatic user-feedback

methods later)

Looking back and forward

Back

I Queries processed in VSM by treating
query as (pseudo-)document

I Inverted index for efficient processing

I Tweaks to VSM formulae, including
pivoted document length
normalization

I Query expansion:
I Global, by looking at co-occurring

terms throughout collection
I Local, by looking for terms in query

results

I Rocchio’s algorithm (PRF) by adding
result document vectors to query
vector, resubmitting

Looking back and forward

Forward

I A lot of heuristic alternatives
introduced here.

I How do we know which one to pick?

I In next lecture, will look at evaluation
of IR methods, for selecting methods
and tuning parameters

I Later, we will look at probabilistic
methods, that present themselves as
more theoretically grounded, requiring
fewer heuristic “hacks”

I Pseudo-relevance feedback generalizes
to true relevance feedback, which is a
form of text classification, to be
looked at in a couple of weeks.

Further reading

I Chapter 9, “Relevance feedback and query expansion”2, of
Manning, Raghavan, and Schutze, Introduction to Information
Retrieval (on query expansion, also discusses semi-curated methods
using thesauri)

2http://nlp.stanford.edu/IR-book/pdf/09expand.pdf

http://nlp.stanford.edu/IR-book/pdf/09expand.pdf

	Query expansion
	Finding related words
	Automatic methods
	Local methods

	Conclusion
	Summary

