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What we’ll learn in this lecture

Non-binary probabilistic models for IR

I Two-Poisson model

I BM25



Binary independence model

I Binary independence uses term occurrence 0, 1

I Models p
{1}
t = P(dt = 1|R, q) as Bernoulli RV, with param p

I p estimated as prop of rel docs that t occurs in.

I Similarly u
{1}
t = P(dt = 1|R̄, q), param u

I u estimated as prop of irrel docs that t occurs in.

Weight wt of query term t occurring in document d is then:

w
{1}
t = log

p
{1}
t (1− u

{1}
t )

u
{1}
t (1− p

{1}
t )

(1)

Note that 1− p
{1}
t , 1− u

{1}
t terms are for documents where query

terms do not occur (see working from last lecture)



n-ary frequency

Represent document as vector of term frequencies:

~d = 〈d1, . . . , d|T |〉 , di ∈ {0, 1, 2, . . .}

Then an equivalent n-ary expression for Equation 1 is1

wtf = log
ptf u0
utf p0

(2)

where

ptf = P(fd ,t = f |R, q) ; utf = P(fd ,t = f |R̄, q) , f ∈ {1, 2, . . .}
p0 = P(fd ,t = 0|R, q) ; u0 = P(fd ,t = 0|R, q)

NOTE: p0 6= (1− ptf ) ; p0 models non-occurrence, not
complement of ptf

1Robertson and Walker, “Some Simple Effecdtive Approximations to the
2-Poisson Model for Probabilistic Weighted Retrieval”, SIGIR, 1994.



Modelling fd ,t

I We need some model of:

ptf = P(fd ,t = f |R, q) (3)

and utf , p0, u0 as probability distributions

I that is, of fd ,t as a random variable over {0, 1, 2, . . .}
I Simplest suitable distribution is Poisson

I Simple because it only requires us to estimate one parameter
(like Bernoulli)



The Poisson process

Poisson process

A process in which events occur over time(-like dimension)
independently and at random, e.g.:

I arrival of radioactive particles at Geiger counters

I emails to mail server

I failure of electronic components

More formally:

I Rate of arrivals λ is constant over time

I Expected arrivals in interval u is λu

I Number of arrivals in disjoint intervals independent
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Poisson distribution
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A random variable X has Poisson distribution with param λ if:

P(X = k) =
λk

k!
e−λ for k = 0, 1, 2, . . . (4)

I X is number of arrivals in unit interval of a Poisson process.

I λ estimated as observed average arrivals



The Poisson Model

I Term frequency can be modelled as a Poisson process

I Assumes that terms occur “randomly” in documents

I . . . around some common rate

One-Poisson Model

P(fd ,t) ∼
λk

k!
e−λ

λ̂ =
ct
N

where ct is collection frequency of t (i.e. total occurrences of t,
not just number of documents occurring in; ct ≥ ft).

I In practice:
I One-Poisson model reasonable fit for content-less words
I But poor fit for content-bearing words (higher fd,t more likely

than Poisson model predicts)



The One-Poisson model

I Empirically, one-Poisson fits content-less words ok
I But poor fit for content-ful words

I More frequent high fd,t than expected2

2
Harter, “A Probabilistic Approach to Automatic Keyword Indexing”, JASIST, 1975



Two-Poisson Model
Suggests fitting with two Poission distributions:

Elite dist atf for docs “about” concept represented by term.

Non-elite dist ntf for docs not “about” concept

Model atf = P(fd ,t |E ), ntf = P(fd ,t |Ē ) as Poisson distributions
with different rates:

atf ∼ λk

k!
e−λ (5)

ntf ∼ µk

k!
e−µ (6)

(λ > µ). Then distribution of fd ,t given by:

P(fd ,t = f ) = π
λk

k!
e−λ + (1− π)

µk

k!
e−µ (7)

where π is probability that document is elite. This can be made to
fit data ok.



Eliteness and relevance

I Eliteness is not same thing as relevance

I Document can be elite but not relevant, relevant but not elite

I But term frequency, conditioned on eliteness, is independent
of relevance

I Therefore:

P(fd ,t = f |R) = P(f |E )P(E |R) + P(f |Ē )P(Ē |R) (8)

P(fd ,t = f |R̄) = P(f |E )P(E |R̄) + P(f |Ē )P(Ē |R̄) (9)



Expanding the Two-Poisson Model

Writing:

p′ = P(E |R) ; q′ = P(E |R̄) (10)

we can then expand Equation 2:

wtf = log
ptf u0
utf p0

(11)

with Equations 8 and 9 as3:

wtf = log

(
p′λf e−λ + (1− p′)µf e−µ

) (
q′e−λ + (1− q′)e−µ

)
(q′λf e−λ + (1− q′)µf e−µ) (p′e−λ + (1− p′)e−µ)

3Robertson and Walker, 1994



Estimating the Two-Poisson

wtf = log

(
p′λtf e−λ + (1− p′)µtf e−µ

) (
q′e−λ + (1− q′)e−µ

)
(q′λtf e−λ + (1− q′)µtf e−µ) (p′e−λ + (1− p′)e−µ)

(12)
Apparently going backwards:

I Now have four or five parameters to estimate per term
I p′ = P(E |R) can’t be estimated, even with rel judgments

I Would have to also judge “eliteness”



Approximating the Two-Poisson

wtf = log

(
p′λtf e−λ + (1− p′)µtf e−µ

) (
q′e−λ + (1− q′)e−µ

)
(q′λtf e−λ + (1− q′)µtf e−µ) (p′e−λ + (1− p′)e−µ)

(13)
At this point, Robertson and Walker (1994) throw up their hands
and suggest approximating the “shape” of Equation 13:

1. Zero for tf = 0

2. Increases monotonically with tf

3. To asymptotic maximum

4. Of Equation 1-like form log p′(1−q′)
q′(1−p′)

From this, they suggest:

wtf =
tf

k1 + tf
· w{1}t (14)

for some tunable constant k1, and recalling that w
{1}
t simplifies to

IDF if we set pt to 0.5.



BMX

Robertson and collaborators developed series weight functions:

w = 1 (BM0)

w
{1}
t = log

N − ft + 0.5

ft + 0.5
× fq,t

k3 + fq,t
(BM1)

If k3 = 0, a slight variant on IDF. Behaves strangely if ft > N/2.

w15 =
fd ,t

k1 + fd ,t
× w

{1}
t + k2 × |q|

|d | − |d |
|d |+ |d |

(BM15)

Robertson and Walker (1994), with doc length and qry freq.

w11 =
fd ,t

k1×|d |
|d |

+ fd ,t
× w

{1}
t + k2 × |q|

|d | − |d |
|d |+ |d |

(BM11)

Same as BM15 except fd ,t downweighted by document length.



BM25

w25 = log
N − ft + 0.5

ft + 0.5
×

(k1 + 1)fd ,t

k1((1− b) + b|d |
|d |

) + fd ,t
×(k3 + 1)fq,t

k3 + fq,t

(BM25)

I BM25 combines aspects of B11 and B15
I k1, b, and k3 need to be tuned (k3 only for very long queries).

I k1 ≈ 1.5 and b ≈ 0.75 common defaults.

I BM25 highly effective, most widely used weighting in IR

I Has TF, IDF, and document length components

I But only loosely inspired by probabilistic model



What have we achieved?

Pros

I Started from plausible probabilistic model of term distribution

I Shown how it can be made to fit something like TF*IDF

I Providing a probabilistic justification TF*IDF-like approaches

Cons

I Directly trying to estimate P(fdt |R) not practicable in
retrieval (too many parameters, not enough evidence)

I Such approaches end up as ad-hoc as geometric model

I Progress requires letting query tell us what relevance looks like

I This the approach of language models



Looking back and forward

Back

I Probabilistic models promise to
directly estimate (monotonic function
of) P(R|d , q)

I Classical models attempt to build
upon collection statistics (e.g.
P(dt |R, q) = proportion of relevant
documents containing t.)

I But lack of evidence at retrieval time
forces very rough approximations

I Effective weighting schemes like BM25
are at best “inspired” by probabilistic
ideas



Looking back and forward

Forward

I Braver steps are required to make
probabilistic models practical

I In particular, query must tell us more
about relevance

I Language models attempt to
implement this



Further reading

I Chapter 11, “Probabilistic information retrieval”4, of Manning,
Raghavan, and Schutze, Introduction to Information Retrieval, CUP,
2009.

I Robertson and Waller, “Some Simple Effective Approximations to
the 2-Poisson Model for Probablistic Weighted Retrieval”, SIGIR,
1994 (how to go from 2-Poission model to something
implementable like BM25).

I Robertson et al., “Okapi at TREC-3”, TREC-3, 1994 (describes the
BM25 model).

I Sparck Jones, Walker, and Robertson, “A Probabilistic Model of
Information Retrieval”, IPM, 2000.

4http://nlp.stanford.edu/IR-book/pdf/11prob.pdf
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