
Lecture 14: Probabilistic Classification

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 14

What we’ll learn in this lecture

I Probabilistic classification
I Naive Bayes classification using

I Multinomial method
I Bernoulli method

I An (ad-hoc) fix to NB classification

I The general log-linear model

I The concept of maximum entropy classifiers

Probabilistic IR, Classification

In probabilistic IR, we ask:

P(r |d , q) (1)

In LM IR, we ask:
P(d |q) (2)

In probabilistic classification, we ask:

P(c |d) (3)

that is: what probability that document d belongs to class c .

Bayes rule

Invoke Bayes’ rule again:

P(c |d) =
P(d |c)P(c)

P(d)
(4)

Now, we estimate P(c |d), and classify d into class c ′ s.t.:

c ′ = argmax
c∈C

P̂(c|d) (5)

P(d) is independent of c , only scales P(c |d). So:

P(c |d) ∝ P(c)P(d |c) (6)

which is all we need for argmaxc∈C

Naive Bayes: naive assumptions

Represent document d by list of words {w1, . . . ,wn}. Then:

P(c |w1, . . . ,wn) ∝ P(c)P(w1, . . . ,wn|c) (7)

Assume (naively) that each wi is cond. independent given c :

P(c |w1, . . . ,wn) ∝ P(c)
∏
i

P(wi |c) (8)

Note the formal relation to unigram language models:

P(d |q1, . . . , qn) ∝ P(d)
∏
i

P(qi |Md) (9)

Naive Bayes estimation: MLE for P(c)

P̂(c |w1, . . . ,wn) ∝ P̂(c)P̂(w1, . . . ,wn|c)

We need estimates P̂(c), P̂(wi |c)
MLE of P(c) given training data:

P̂(c) =
Nc

N
(10)

where:

N number of training documents

Nc number of train docs in class c

I Our “prior” on class membership

I (In practice, gets overweighted by term contributions)

Naive Bayes estimation: MLE for P̂(wi |c)

P̂(c |w1, . . . ,wn) ∝ P̂(c)P̂(w1, . . . ,wn|c) (11)

Similarly:

P̂mle(wi |c) =
Fci
Fc

(12)

where:

Fci total occurrences of term ti in documents of class c training
set (note: ti is the term that word wi is)

Fc number of words in documents of class c training set

Naive Bayes: smoothing

If term ti never appears in class c in training data, then:

P̂(wi |c) = 0 (13)

I documents containing t have 0 probability of being in class c .

I Overfitting to training data.

To avoid, (Laplace) smooth the counts:

P̂(wi |c) =
Fci + 1

Fc + |V |
(14)

In Bayesian sense:
I 1/|V | is our prior

I each term equally likely to appear given class

I and Fci/Fc is our update
I evidence we see from [sampled] training documents

Multinomial model

Instead of P(w |c), treat d as feature vector f = {f1, . . . , fn}
I n is number of terms in vocabulary

I fi = fd ,ti

Then (writing pi = P(wi |c)):

P(f |c) =
(
∑

i fi)!∏
i fi !

∏
i

pfii (15)

I Multinomial prob. dist. for drawing |d | items with given prob.

I Easy to show that:

P(f |c) ∝ P(w |c) (16)

Bernoulli Naive Bayes

Alternative model, treat d as feature vector e = {e1, . . . , en}.
I ei = 1 if ti ∈ d , 0 otherwise

Then:

P(e|c) =
n∏

i=1

(eiP(ei |c) + (1− ei)(1− P(ei |c))) (17)

where:

P̂(ei |c) is fraction of docs containing ti

I Bernoulli model
I Explicitly accounts for missing terms

I which multinomial does not

I Equivalent to Binary Independence Model in prob. IR

Performance

I Naive Bayes makes poor estimates of absolute probabilities.

I In particular, tends to be overconfident

I . . . due to dependence between terms

I But class predictions more reasonable

Experiment

I Binary classification of GCAT class
I Train 1000, test 1000
I Smoothed multinomial NB classifier

I Estimation accuracy:
I Of 256 documents classifier is ≥ 99.9% sure are GCAT
I . . . only 92.9% actually are

I Prediction accuracy:
I 93% accuracy, 89% recall

Assumption of independence

I NB assumes evidence of terms independent, given class

I However, terms tend to co-occur (be dependent)

I Dependence not weakened (possibly reinforced) by class

I For instance:

P(“dow jones”|FIN) 6= P(“dow”|FIN)×P(“jones”|FIN) (18)

but:

P̂(“dow jones”|FIN) = P̂(“dow”|FIN)× P̂(“jones”|FIN) (19)

I This exaggerates probability estimates
I Can also harm class predictions if:

I One class has strong co-dependence
I Other classes do not

Comparative performance

Figure : Joachims, “Text Categorization with SVM”, 1998

I Generally worse than Rocchio, k-NN, SVM

I Tendency to “explode”: perform very poorly on certain topics

I Easy to implement, quick to train (single pass)

I Bernoulli method more robust, but requires feature selection

NB as log linear model

Consider again (feature-vector) NB calculation:

P(c |f1, . . . , fn) ∝ P(c)
∏
i

P(fi |c) (20)

Under the multinomial model:

P(fi |c) = fiP(wi |c) (21)

Exchanging (21) in (20), and taking logs, gives:

logP(c|f1, . . . , fn) ∝ logP(c) +
n∑

i=1

fi logP(wi |c) (22)

NB as log linear model (cont.)

logP(c|f1, . . . , fn) ∝ logP(c) +
n∑

i=1

fi logP(wi |c) (23)

This has form:

log `(c |f1, . . . , fn) = bc + wc
Tfi (24)

where:

bc = logP(c) = log Nc
N

wci = logP(wi |c) = log Fci+1
Fc+|V |

(25)

This is a log linear model:

I log of response is linear sum of weighted features plus bias

I (bias b quickly outweighed by features)

“Fixing” NB for text

log `(c |f1, . . . , fn) = b + wc
Tfi (26)

Rennie et al. (2003) argue that (multinomial) NB for text
classification has three problems:

I Skewed data bias: class underrepresented in training data will
be biased against

I Weight magnitude errors: some classes violate independence
more than others

I Poor text modelling: text frequency violates multinomial
assumptions

Fixing NB: undoing skew

Rennie et al. alleviate skew by changing weight from:

wci = log
Fci + 1

Fc + |V |
(27)

to:

w ′ci = − log
Fc̄ i + 1

Fc̄ + |V |
(28)

where Fc̄ i is number of occurences of term ti in all classes except
c . (I suspect this only works for multi-class classification.)

Fixing NB: undoing weight magnitude errors

Rennie et al. alleviate weight magnitude errors by normalizing
feature weights:

w ′′ci =
w ′ci∑
k |w ′ck |

(29)

This adjustment means that the sum of weights for each class is
the same.

I Reduces strong term dependence (co-occurrence) as
side-effect

Fixing NB: modelling text better

Rennie et al. improve text modelling by (ta-da!) applying
document-length normalized TF * IDF transform:

f ′i = log(1 + fi)

f ′′i = f ′i log
N

fti

f ′′′i =
f ′′i√∑
k f
′′
i

2

Fixing NB: the outcome

With these transformations, Rennie et al. report similar
effectiveness for transformed NB as for SVM:

Collection NB TNB SVM

Industry sector 0.582 0.923 0.934
20 Newsgroups 0.848 0.861 0.862
Reuters (micro) 0.739 0.844 0.887
Reuters (macro) 0.270 0.647 0.694

But we’ve departed from assumptions of model . . .

Loglinear models

Consider again the multiplicative model:

P(c |~f) = Z−1
n∏

i=1

αfi
i (30)

and its log-linear equivalent

logP(c |~f) = − logZ +
n∑

i=1

fi logαi (31)

where:

Z is a normalizing value (to make this a probability)

αi is the weight of feature αi

Loglinear models and Maximum Entropy

logP(c |~f) = − logZ +
n∑

i=1

fi logαi (32)

I In NB, αi calculated from empirical frequencies

I However, we are free to choose αi to suit other criteria

I One such criterion is that of maximum entropy

Entropy

If X is discrete RV with distribution:

Pr(X = xk) = pk k = 1, 2, . . . , n (33)

then entropy of X is:

H(X) = −
∑

pk log pk (34)

I Entropy is 0 if there is an i s.t. pi = 1
I We are certain which even will occur

I Entropy unconditionally maximized where pi = pj for all i , j
I We have no idea which event will occur

I Given data, the maximum entropy model is the one that
maximizes entropy, given data

I The maxent model “best explains” the data

Maxent and loglinear models

logP(c |~f) = − logZ +
n∑

i=1

fi logαi (35)

For loglinear models:

I Constraints are observed frequency of features (as they
co-occur with classes)

I Maxent model maximizes entropy of P(c|~f)

I . . . by selecting correct αi

I There is a unique solution, which can be found iteratively
I See Chapter 16 of Manning and Schutze, Foundations of NLP,

1999, for details

Maxent and logistic regression

I Maxent classifiers a relatively recent idea (last 20 years or so)

I Turn out to be equivalent to a much older (c. 70 years) idea:

I That of logistic regression, which we discuss next week

Looking back and forward

Back

I Naive Binomial a simple probabilistic
classification model

I Assume independence between
features (terms)

I P(d |c) =
∏

P(t|c)

I Multinomial method analogous to
unigram language models in IR

I Bernoulli method analogous to BIM

Looking back and forward

Back

I NB gives poor probability estimates

I Reasonable class predictions

I Fragile to classes with high term
dependence

I Can be “fixed” to give
SVM-competitive accuracy

I NB a case of general log linear models

I Maxent another way of fitting log
linear models

Looking back and forward

Forward

I Logistic regression another form of
log-linear model

I Try to fit transformed linear model to
empirical data

I Equivalent to maxent but old-school
(hence preferable)

Further reading

I Chapter 13, “Text classification and Naive Bayes”1, of Manning,
Raghavan, and Schutze, Introduction to Information Retrieval, CUP,
2009.

I Rennie, Shih, Teevan, and Karger, “Tackling the Poor Assumptions
of Naive Bayes Text Classifiers”, ICML 2003 (fixing Naive Bayes)

I Chapter 16, Manning and Schutze, Foundations of NLP, 1999
(maximum entropy classifiers)

1http://nlp.stanford.edu/IR-book/pdf/12lmodel.pdf

	Probabilistic classification
	Naive Bayes
	Naive Bayes in practice
	Naive Bayes as log linear model
	Maximum Entropy
	Summary
	Summary

