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1 Introduction

This article is a primer or tutorial on sampling from a binomial (two-class) popula-
tion; estimating the positive proportion in that population; and setting a confidence
interval on said proportion. The tutorial is particularly intended for those working
in e-discovery, in which the population is a collection of documents, the two classes
are relevant and irrelevant documents, and the evaluator isattempting to estimate the
proportion of documents in the collection (or some section of it) that are relevant to
a production request. The tutorial is specialized to e-discovery only in two regards.
The first specialization is that the examples we consider contain the very low positive
proportions that are frequently encountered in e-discovery; such extreme proportions
mean that some common approximation methods, such as the Wald interval (Section 7),
can be inaccurate. The second specialization is in the final section (Section 9), where
we briefly decode contemporary e-discovery practice, particularly the ubiquitous (but
often misunderstood) “95%± 2%”.

The tutorial is aimed at a non-mathemetical audience that wants a deeper under-
standing of what is going on in point and interval estimation. It avoids mathemetical
formulae, and works instead with verbal descriptions and figures. Only the simplest
form of sampling, namely simple random sampling, is considered; this is, in any case,
the predominant form used in e-discovery, at least as encountered by non-technical
practitioners. We focus on the sampling distribution, and how this relates to (and
doesn’t relate to) the confidence interval.

2 Model

Assume that every document in the collection is either wholly relevant or wholly ir-
relevant to a topic, and that we have a reviewer who is able to make the assessment
of relevance without error, without changing their conception of relevance, and with-
out the relevance of one document influencing the relevance of another. (These are

∗Comments, corrections, and suggestions for improvement welcomed; please send them to
william@williamwebber.com
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unrealistic assumptions, but they are necessary for the sampling model we’re going to
develop to be strictly valid.) We’ll also ignore the distinction between documents and
document families (for instance, attachments and the emails they are attached to), and
assume that the unit of assessment and the unit of productionis the same.

Let the number of documents in the collection beN , and the proportion of these
documents that are relevant beπ; this latter is the value that we want to estimate. We
drawn documents at random from the collection, in such a way that any set ofn of the
N documents in the collection is equally likely to be sampled,thus forming asimple
random sample. Then documents sampled are assessed for relevance, andr of them
are found to be relevant; thus, the proportionp of the sample that is relevant isr/n.
Sampling in this way is often pictured as drawingn balls from a bag of black and white
balls, in whichπ of the balls are white, where white balls represent relevantdocuments,
and black balls irrelevant ones. This is known assampling without replacement.

An alternative form of sampling is to choose one document at atime, until we have
maden selections. Each document has the same probability of1/N of being chosen
at each draw, and the one document can be selected multiple times. In terms of the
picture of the bag, we return each ball to the bag after it has been drawn. This form of
sampling is calledsampling with replacement. At each draw, the chance of drawing a
white ball isπ, which allows an even simpler picture to be applied: that of makingn
flips of a biased coin with probabilityπ of turning up heads, where heads represents
relevant.

Sampling without replacement gives marginally more accurate estimates, as well as
being more natural in most circumstances (we wouldn’t pick the same document to be
assessed twice). Analysis based on sampling with replacement is easier, however, and
gives a close approximation to sampling without replacement, provided the number
of documentsN is much larger than the sample sizen (N ≫ n). SinceN ≫ n
generally holds (for instance, we might be sampling2400 documents from a collection
with 1 million), the simpler approximation of with-replacement sampling is often used
in analysis, even when the actual sampling has been without-replacement. We will
perform with-replacement analysis in this tutorial.

3 Sampling distribution

The numberr of relevant documents in the sample will vary randomly from one sample
to another, and with it the sample proportionp. The probability that a sample will
contain a given numberr of relevant documents, under simple random sampling with
replacement, is given by a distribution known as the binomial distribution. We callr
a sample statistic (which simply means some value calculated from the sample;p =
r/n is an alternative sample statistic), and say that the binomial distribution is the
sampling distribution of this statistic (approximately so, if actual sampling is without
replacement). The primary reason for performing sampling in a deliberately random
way (rather than by judgment or by some default ordering, such as the firstn documents
in the collection) is so that results can be analyzed, and their sampling errors modelled,
using such random distributions. Chance is more predictable than choice.

The binomial distribution for a true proportionπ = 1% and a sample size ofn =
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(a) Sample size2400
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(b) Sample size240

Figure 1: Binomial sampling distribution for a with-replacement sample of2400 and of
100 documents from a collection with1% of documents relevant. Thex axis is scaled
so that the proportionp = r/n of relevant documents in the sample is the same.
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2400 is shown in Figure 1(a); that for a sample size ofn = 240 in Figure 1(b). The
former figure shows that if we samplen = 2400 documents from a collection in which
π = 1% are relevant, the probability that the sample will have24 relevant documents
is 0.0815 (around one in twelve); that it will have18 is 0.0410 (around one in twenty-
four); that it will have12 is 0.0028 (around one in 360); and so forth. The probability
does not drop to0 for any valuer of relevant documents in the range{0, 1, · · · , n}
(though we have truncated the figure to the right). The probability of sampling2400
relevant and no irrelevant documents from a collection in which only1% of documents
are relevant is infinitesimally small, but (at least under with-replacement sampling) it
is not0.1

Contemplating the binomial sampling distribution is all very comforting, but the
practical reality is that for any given sample, though the statisticr we observe will come
from some sampling distribution, we don’t know which distribution has generated ours,
because we don’t know what the true proportionπ is. Instead, we must use the observed
statisticr as evidence to estimate what the value ofπ might be.

4 Point estimate

The first estimate we consider is the point estimate; a singlevalue that we might
roughly call the “best estimate” forπ given the evidence, generally written̂π. The
commonest way of making this estimate is to ask: consideringall the possible values
of π, which makes the sample outcomep most likely? This estimate is known as a
maximum likelihood estimate (MLE). When sampling from a proportion, the answer
is straightforward (though the working to prove this answeris slightly less so2): the
true proportionπ for which the sample proportionp = r/n is most likely to occur, isp
itself. That is,p is the MLE ofπ; we writeπ̂mle = p.

Consider the scenario in which a sample of2400 documents is drawn, and24 are
found to be relevant. We’ve seen above (Figure 1(a)) that theprobability of sampling24
relevant documents out of a sample of2400 from a population withπ = 1% relevant is
is 0.0815. Let’s hypothesize thatπ were slightly higher, say0.011; then the probability
of r = 24would be lower, at0.0728. Similarly, if π were slightly lower, say0.009, then
the probability ofr = 24 also falls, to0.0716. In fact, for any alternativeπ 6= 0.01,
we’ll find that the probability of samplingr = 24 is lower than it is forπ = 0.01, as is
shown in Figure 2. Therefore,π̂mle = p = 0.01.

A point estimate alone, however, is insufficient. Every random sample has a sam-
pling distribution (the distribution for the previous paragraph’s scenario is shown in
Figure 1(a)); therefore, every random sample has the possibility of sampling error.
Moreover, sampling error will vary for different sampling setups. In particular, the

1For those who like to contemplate such things, it is1/104800 . The divisor here has4800 zeroes. In
comparison, the Milky Way galaxy is estimated to have in the order of1069 atoms. If each of these atoms
were converted into a galaxy the size of the Milky Way galaxy,then the total number of atoms in all of
these galaxies would be104761 , still a duodecillion (a thousand trillion trillion trillion) times smaller than
our divisor. It is an interesting question whether we could develop a sampling method so truly random as to
given an event a faithful1/104800 probability. If such a method were proposed, don’t volunteer to test it.

2http://en.wikipedia.org/wiki/Maximum_likelihood#Discrete_distribution.2C_

continuous_parameter_space
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Figure 2: Likelihood of drawing24 relevant documents in a sample of2400 from a
collection with a given proportion relevant.

smaller the sample, the greater the likely error. The inverse relationship between sam-
ple size and likely error can be seen by comparing, with the2400 sample, the greater
spread (in terms of sample proportion,p = r/n) of the 240-sample distribution in
Figure 1(b). A sample proportion of1 in 60, almost twice the true proportion, has a
probability of one in eight in the240 sample, but less than one in a thousand for the
2400 sample. When we quote an estimated result, we need to expressthe uncertainty
inherent in our random sampling and estimation setup.

5 Confidence intervals

A common way of expressing the uncertainty of random sample estimation is through a
second form of estimate known as a confidence interval. This interval provides a range
of values, and states as a percentage our degree of confidencethat the true value ofπ is
within that range. We might say, for instance, thatπ is between0.006 and0.016 with
95% confidence.

A confidence interval is derived by reasoning about samplingdistributions, but in
a different way from the reasoning that leads to the MLE pointestimate. For the point
estimate, we ask what proportion̂π makes the observed sample statisticr most likely.
For confidence intervals, we instead look for bounding proportionsπl andπh that each
give the observed sample statistic a particular degree of unlikeliness.
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Figure 3: Sampling distributions for the hypothesized lower and upper bound on a
95% exact binomial confidence interval on the proportion of relevant documents in a
collection, for a sample of2400 documents, of which30 are relevant.
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Let’s return to our scenario of findingr = 30 relevant documents in a simple
without-replacement random sample ofn = 2400 documents. Our goal is to calculate
a 95% confidence interval onπ from this sample result. Starting with the lower bound,
we ask ourselves, for what true proportionπl would the probability of observing 30
or more relevant documents in the sample be 2.5%? As it turns out, this proportion is
0.84%. The sampling distribution ofπ = 0.84% is shown in Figure 3(a). The height
of the bars that are at or abover = 30 sum to0.025; that is, whenπ is 0.84%, there is
a 2.5% probability that our sample will have30 or more relevant documents in it. This
sets the lower bound of our interval.

Next, we ask, for what true proportionπ would the probability of observing 30
or fewer relevant documents in the sample have been 2.5%? This proportion works
out to πh = 1.78%, as shown in Figure 3(b). That in turns set the upper bound of
our interval. We now have two hypothesized values, one high,one low, under each of
which the probability of a result at least as extreme as our observed result is 2.5%. So
[0.84%, 1.78%] is our (100% - 2.5% - 2.5% = ) 95% confidence interval onπ.

To be precise, the formal definition of a confidence interval requires us to go a
couple of steps further. A confidence interval on a proportion has 95% confidence if
the following holds: for any true proportionπ, if an approaching-infinite number of
samples were drawn, and for each a sample a confidence interval were calculated using
the same procedure, then at least 95% of these confidence intervals would includeπ.
The reasoning with the sampling distributions of hypothesized boundingπ values is a
procedure that satisfies this formal requirement.

The method described above for calculating a confidence interval on a proportion
is known as the exact binomial confidence interval, because it is based on the exact
(binomial) sampling distribution of the statistic (though, in fact, the binomial distri-
bution itself is an approximation if sampling is without replacement, as it generally
is). (The method is also known as the Clopper-Pearson interval, after its discoverers.)
The exact interval guarantees 95% coverage, in the formal sense described in the pre-
vious paragraph. For mostπ values and sample sizes, coverage will actually be above
95%, making the interval conservative. Despite (or becauseof) this conservatism, it
is the interval one would recommend for certification purposes. Several approximate
intervals, however, have also been developed, for analytical convenience or reduced
conservatism. We’re going to look at two of these next, the Wilson (Section 6) and the
Wald (Section 7) intervals, both of which use so-called normal approximations. The
Wald does so in a particular simplifying way, making it widely used in exposition and
rough reckoning, but also helping spawn some of the misconceptions about confidence
intervals that we will discuss in Section 8.

6 An accurate approximate interval: the Wilson

A distribution that pops up all the time in statistics is the normal distribution, colloqui-
ally known as the bell curve. The formula for the normal distribution is not particularly
simple, but its properties are familiar and computationally convenient, so it is a pre-
ferred analytic tool. As it happens, the binomial distribution is approximately normal,
more closely so as the sample size increases. Whereas the binomial distribution takes
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sample size and proportion as its parameters, the normal distribution takes mean (the
center of the distribution) and variance (which gives the width of the distribution). A
binomial distribution with sample sizen and proportionπ is approximated by a normal
distribution of meanµ = nπ and varianceσ2 = nπ(1− π).

We can use the normal distribution to approximate the sampling distribution of the
binomial in deriving a confidence interval on a proportion. As with the binomial, we
find the lower-boundπl for which a normal sampling distribution has a 2.5% probabil-
ity of generating the observed sampler or higher, usingπl as the mean andπl(1−πl)/n
as the variance, and conversely for the upper-boundπh. The approximate normal con-
fidence interval on the proportion described above is known as the Wilson (or score)
interval.

The binomial distribution is discrete, giving probabilities only to whole samples
r such as0, 1, 2, and so forth, whereas the normal is continuous, giving probabilities
(more formally, probability densities) to fractional samples.3 Therefore, graphically,
in calculating the 2.5% tails of the bounding sampling distributions, we are measuring
the area under a curve, not summing the probabilities at sample points. Taking again
our scenario of a sample size of2400 with 30 relevant documents, the lower-bound
normal approximate sampling distribution is shown in Figure 4(a), and the upper-bound
sampling distribution in Figure 4(b). The Wilson interval for this sample outcome is
[0.88%, 1.78%].

7 A less accurate approximate interval: the Wald

The Wilson interval is still analytically inconvenient because the bounding sampling
distributions have different variances and hence different widths. We can simplify
matters further if we give each bounding distribution the same variance. Since the
variance of the normal approximation to the binomial is derived from the proportion
π, this is equivalent to using the sameπ to calculate the variance of both bounding
distributions, rather than the actualπ values at the hypothesized bounds. A simple
choice for this proportion is the actual proportion observed in the sample,p, from
which we get the variancep(1 − p)/n. We then need to find the hypothetical low and
high bounds that fit these equal-width sampling distributions. This leads to bounding
distributions with the same shape, differing only in location, as we see for our example
scenario in Figure 5. This confidence interval is known as theWald interval. The Wald
interval for our sampling example is[0.81%, 1.69%].

Since the bounding sampling distributions of the Wald interval are identical and
symmetric, it follows that the interval is symmetric, as wide below the MLE point
estimate as above. And indeed the interval for the example scenario is symmetric in
this way; the point estimate isr/n = 30/2400 = 1.25%, and the interval can be
expressed as1.25%± 0.44%. Moreover, if you were to move the two intervals so that
they were centered on the sample valuer, then not only would they overlap, but also
the outer 2.5% tails of the melded interval would sit on the boundaries of the interval,

3This makes little modelling sense, but it allows us to adjustthe boundary values more precisely to give
average coverage of 95% (though at the price of under-coverage for certain proportionsπ).
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Figure 4: Normal approximation sampling distributions forthe hypothesized lower
and upper bound on a 95% Wilson confidence interval on the proportion of relevant
documents in a collection, for a sample of2400 documents, of which30 are relevant.
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Figure 5: Normal approximation sampling distributions forthe hypothesized lower
and upper bound on a 95% Wald confidence interval on the proportion of relevant
documents in a collection, for a sample of2400 documents, of which30 are relevant.
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Figure 6: Wald interval interpreted as a margin of error.

just as the inner 2.5% tails of the bounding intervals did, asillustrated in Figure 6. This
relationship holds for any sample, and for any confidence level.

What we have in effect achieved is to replace the confidence interval derived from
bounding sample distributions with one taken from the tailsof a single sampling distri-
bution, which is the same as the (approximate normal) sampling distribution of the
MLE point estimate forπ. This seductively encourages us to stop thinking about
bounding distributions altogether, and start to think of the confidence interval as ex-
pressing some sort of distribution of error around the pointestimate itself.

Once we make this simplification, all sorts of possibilitiesopen up to us. For the
mathematical statistician, methods of working with normaldistributions are numerous;
for instance, we can estimate the intervals of compound measures such as recall by
the technique of “propagation of error”. For the back-of-the-envelope statistician, the
confidence interval has the simple formp± 1.96 ∗

√
p(1− p)/n, and we can see that

(for instance) to halve the width of the confidence interval,we need to quadruple the
size of our sample.

Unfortunately, the Wald interval is quite inaccurate in some circumstances, partic-
ularly when sample sizes are small and the true proportionπ is close to1 or (as it often
is in e-discovery)0. The accuracy of a confidence interval method for a given sample
size can be measured by computing the probability that different true proportionsπ
will be contained in the interval. Figure 7 displays coverage for the Wald interval, for
sample sizes of100 and2400. Though coverage of 95% is the goal, it can fall as low
as 25% for the smaller sample, when the proportion relevant in the population is low;
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(b) Sample size2400

Figure 7: Coverage of the Wald confidence interval on a proportion for sample size of
100 and sample size of2400. Note the differenty axes.
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Figure 8: Width to the 2.5% tail for the normal approximationto the binomial sampling
distribution for different true proportionsπ, on a sample size of2400.

for the larger sample, undercoverage is limited to 93%.
The reason for the inaccuracy of the Wald interval is that, byusingp for the variance

of both bounding distributions, the Wald interval enforcesa specious symmetry on
the interval. The true interval is asymmetric; for samples with p < 0.5, the upper
bound sampling distribution is wider than the lower; and this disparity grows asp
approaches0, as Figure 8 shows. A particular crisis for the Wald intervaloccurs when
there are no relevant documents in the sample; here,p is 0, and an anomalous interval
of [0, 0] is produced, no matter how small the sample size. This interval is clearly
incorrect: one can sample from a collection with relevant documents in it and have no
relevant documents in the sample.4 For these reasons, though useful as an analytic tool,
the Wald interval should be avoided in practice.

We tabulate the interval estimates from the three interval methods we’ve considered
in Table 1. The Wald interval is symmetric (1.25% ± 0.44%), whereas the exact and
Wilson intervals are asymmetric, wider on the side towards 50%. The symmetry means
that, compared to the other two intervals, the Wald intervalis slightly longer on the
low end, and decidedly shorter on the upper end. The exact andWilson intervals are
identical (within rounding) at the upper end; the Wilson is slightly shorter at the lower
end. We can’t actually say which of these intervals is more “accurate” in this case,

4A human, seeing a[0, 0] interval on a modest sample will realize something is wrong,even if they’re
not sure what; but these testing regimes are increasingly computerized, and a computer seeing this will carry
blithely on.

13



Method
Interval 1.25%± width

Bottom Top Lower Upper

Exact 0.84 1.78 0.41 0.53
Wilson 0.88 1.78 0.37 0.53
Wald 0.81 1.69 0.44 0.44

Table 1: Intervals and interval widths for the 95% exact binomial, Wilson, and Wald
confidence intervals, for a sample of2400 documents, in which30 were relevant.

though, since we don’t know what the true proportionπ is (and even if we did, an
interval only needs to cover it 95% of the time, not always).

8 Confidence interval misconceptions

We’ve covered the difficult ground in our discussion of confidence intervals on the
proportion; now it is time to use what we’ve learnt to clear upsome misconceptions
about confidence intervals.

8.1 Confidence intervals are not necessarily symmetric

It is very common to think of a confidence interval as some sortof symmetric “margin
of error” on the point estimate, and express the interval in aform like “0.2 ± 0.03”.
However, the exact confidence interval on the proportion (and accurate approximations
to it) is only symmetric in one special case, where the observed sample proportionp is
0.5. For every other value ofp, the interval is asymmetric, longer on the inward than
the outward side, and sometimes significantly so. The Wald interval does always give
symmetric intervals, but this is the main cause of its inaccuracy.

8.2 Confidence level does not equal width

Don’t make the mistake of thinking that the confidence level of an interval (say, 95%
or 99%) has a simple mapping to the interval’s width. A 99% interval is not simply
4% wider than a 95% interval, at least not in the space of the proportion parameter.
If we used the Wald interval, then we can consider the 99% interval to be 4% wider
in a sort of probability space – that is, we go out a further 2% at each end of normal
distribution. But this is much more than 2% wider when expressed in proportions of
the population. In fact, a 99% interval on a proportion is more than 30% wider relative
to a 95% interval; for instance, if the 95% interval is[0.4, 0.6], the 99% interval is
[0.37, 0.63]. And a 99.9% interval is 30% wider than a 99% interval; and so forth. This
leads on to the next point.
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8.3 A 100% confidence interval is largely meaningless

Newcomers to estimation occasionally ask for a 100% confidence interval, or wonder
whether we settle for 95% just out of some laziness or vagueness (“after all, it’s only
another 5% . . . ”). A 100% interval, however, will be at least(0, 1); the rounded brack-
ets mean we can rule out0 or 1, but only if we see at least one relevant or one irrelevant
document in the sample. We can only rule out true proportionsthat have no probabil-
ity of producing the observed sample. But even a true proportion of 99.9% has some
probability of producing a sample holding no relevant documents (although again we
may be off counting atoms within galaxies within atoms within galaxies). When we
sample, we have to accept some degree of uncertainty; what isunder our control is the
degree of uncertainty we’re willing to accept.

8.4 The width of the confidence interval cannot generally be known
in advance of sampling

We would like to know before we design our sample how wide our confidence interval
will be, for a given sample size. Unfortunately, as we have seen, the width of a confi-
dence interval on a proportion depends on the sample proportion actually observed. All
we can do is say what the maximum confidence interval width will be, which occurs
when the sample proportion is0.5.

8.5 A confidence interval is not simply the percentiles of a sampling
distribution around the point estimate

A frequent misconception is that a confidence interval can simply be taken from the
percentiles of the sampling distribution of the point estimate; that, in other words, the
confidence is simply a sampling “margin of error” around the point estimate.5 Rather,
as we have seen, a confidence interval is formed from the inward-facing tails of the
sampling distributions around the upper and lower hypothesized bounds on the inter-
val. This is only equivalent to percentiles of a sample-centered when the sampling
distribution is (or is approximated as) symmetric and identically-shaped for all pa-
rameters. That is the case for the Wald approximation; but, as we’ve seen, the Wald
approximation is often not a close one.

9 Confidence intervals in e-discovery practice: the mean-
ing of 95%± 2%

Now – finally! – we’re ready to look at the use of confidence intervals in e-discovery.
Of course, there’s an enormous amount that could be said here, so I’m going to re-
strict myself to just one point: clarifying the meaning of the sometimes mysterious
expression “95% ± 2%” that is frequently quoted in e-discovery practice, along with
the magical sample sizes2399 and2401 that accompany it.

5People commonly misapply bootstrap and other resampling methods in this way.
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First, let’s unpack “95%±2%”. It must be immediately clarified that this expression
is properly made about a planned sampling task (or, at least,retrospectively about what
was planned), not about an actual estimate; the reason has todo with the “±2%”, as
we’ll see in a moment. The “95%” indicates that what is being planned is a 95%
confidence interval, typically on the proportion of relevant documents either in the
whole collection or in some part of it (such as the subset of the collection not being
produced). That is, the evaluation designer wants to be ableto say at the end of the
sampling something like “we have 95% confidence that the trueproportion of relevant
documents lies within the interval [x, y]”.

The “±2%” is stating the desired width of the confidence interval. The“2%” is a
proportion of the entire collection, not of the point estimate; the evaluator is imagining a
statement like “44%±2%”. As we said before, however, the exact width depends upon
the observed sample proportion; here, “±2%” is the maximum width. When we’ve
drawn the sample, we can calculate the exact interval; it is amistake to simply apply
the±2% to the observed sample proportionp. The interval on a proportion is widest
when the sample proportionp is 0.5. This can be observed for normal approximations
in Figure 8, but the same holds true for the exact interval andcloser approximations to
it. So to achieve the “±2%” guarantee, the evaluator must choose a sample size large
enough to give an interval this width if the sample proportion turned out to bep = 0.5.

We mentioned above that the exact interval is not generally symmetric, and so that
stating it in terms of a point estimate plus or minus a margin of error is incorrect. For
the special case that the sample proportionp is 0.5, the exact interval is, however,
symmetric, so “±2%” is correct as a statement of maximum width, though misleading
if we take it to imply that the actual interval will be symmetric.

What sample size is necessary to achieve the worst-case goalof “±2%”? For the
exact binomial confidence interval,2399 samples are required, which is where this
magical number comes from. If the approximate Wald intervalis used instead, the
number is2401. We’ve seen that the Wald interval can be quite inaccurate; you may
prefer to associate with e-discovery statisticians who talk about “2399” than those talk-
ing about “2401”. You’ll notice I’ve sat on the fence in this tutorial by working with
2400.
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