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Ranked lists are encountered in research and daily life, and it is often of interest to compare these
lists, even when they are incomplete or have only some members in common. An example is
document rankings returned for the same query by different search engines. A measure of the
similarity between incomplete rankings should handle non-conjointness, weight high ranks more
heavily than low, and be monotonic with increasing depth of evaluation; but no measure satisfying
all these criteria currently exists. In this article, we propose a new measure having these qualities,
namely rank-biased overlap (RBO). The RBO measure is based on a simple probabilistic user
model. It provides monotonicity by calculating, at a given depth of evaluation, a base score that
is non-decreasing with additional evaluation, and a maximum score that is non-increasing. An
extrapolated score can be calculated between these bounds if a point estimate is required. RBO
has a parameter which determines the strength of the weighting to top ranks. We extend RBO
to handle tied ranks and rankings of different lengths. Finally, we give examples of the use of the
measure in comparing the results produced by public search engines, and in assessing retrieval
systems in the laboratory.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statistics—correlation
and regression analysis; G.3 [Mathematics of Computing]: Probability and Statistics—experimental design;
H.3.4 [Information Storage and Retrieval]: Systems and Software—performance evaluation (efficiency and
effectiveness)

General Terms: Experimentation, Measurement, Human factors

Additional Key Words and Phrases: Rank correlation, probabilistic models, ranking

1. INTRODUCTION

Ranked, incomplete lists of items are encountered everywhere. Magazines list the most
eligible bachelors; newspapers rank bestsellers; the registry reports the most popular boys’
names for a year; and search engines rank documents by likelihood of relevance to a query.
Such rankings share important characteristics. First, they areincomplete; that is, they do
not cover all elements in the domain. The magazine lists the ten most eligible bachelors,
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not the entire population of marriageable men. Second, theyare top-weighted; the top
of the list is more important than the tail. The contention between best and second-best
seller is more intense than between three-hundredth and three-hundredth and first. And
third, they areindefinite; the decision to truncate the ranking at any particular depth is
essentially arbitrary. The provider or user of the list could continue to enumerate items
until the domain was exhausted, at least conceptually, but the cost involved is decreasingly
justified by the utility obtained. A search engine might allow the user to scroll through
two million results for the query “holiday ideas”, but the user is unlikely to look beyond
the first few dozen entries. These three characteristics of an indefinite rankingare related:
because the ranking is top-weighted, value decays with depth; decaying value motivates a
truncation of the list at some arbitrary rank; and truncation leaves the ranking incomplete.

Rankings are often compared. How closely do the bestseller lists of a newspaper and
an online bookseller agree? Have tastes in boys’ names changed much over the past ten
years? And the goal of the comparison is frequently to infer the similarity of the processes
which have generated the rankings. How alike are the resultsof two search engines over
a series of queries? And how similar, therefore, are the collections and the retrieval algo-
rithms of those engines? The objective and repeatable comparison of rankings requires a
rank similarity measure. Such a measure needs to treat the peculiar features of indefinite
rankings in a reasonable way. It must handle the appearance of items in one list but not
the other. Differences at the top of the list ought to be givenmore weight than differences
further down. The measure should not arbitrarily assign a cutoff depth, but be consistent
for whatever depth is available from the list provider or reached by the user. And the mea-
sure should do all of the above while imposing a minimum of assumptions on the data, and
none that violate the nature of indefinite rankings. A measure with these features qualifies
as anindefinite rank similarity measure.

Given the ubiquity of indefinite rankings, it is surprising that there appear to be no indef-
inite rank similarity measures. There are many similarity measures on conjoint rankings
(that is, where both lists consist of the same items). Tarsitano [2002] reviews thirty, and
more have been proposed since then. Some metrics on conjointrankings are top-weighted,
and more can be made so. A few unweighted measures on non-conjoint rankings have been
analysed, and a couple of top-weighted, non-conjoint measures have been described. But
even amongst this last set, none of the existing measures properly handle the indefinite-
ness of indefinite rankings, instead assigning arbitrary cutoff depths and not maintaining
monotonicity as these are varied.

In this article, we propose not merely a new, but (we argue) the first similarity measure
that is appropriate for indefinite rankings,rank-biased overlap(RBO). This measure is
based on (but is not tied to) a simple user model in which the user compares the overlap
of the two rankings at incrementally increasing depths. Theuser has a certain level of
patience, parameterized in the model, and after examining each depth has a fixed proba-
bility of stopping, modelled as a Bernoulli random variable. RBO is then calculated as the
expected average overlap that the user observes in comparing the two lists. The measure
takes a parameter that specifies the user’spersistence, that is, the probability that the user,
having examined the overlap at one rank, continues on to consider the overlap at the next.
The product of these probabilities gives the probability that the user will reach a certain
rank, defining theweightof the overlap to that rank. The weights are geometrically de-
creasing, but never reach zero, reflecting the indefinite nature of the ranking; moreover,
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they are naturally convergent, so no normalization is required.
Under RBO, the overlap to each rank has a fixed weight. This provides an elegant

mechanism for handling the incomplete rankings in a consistent way, without having to
embed the depth of the evaluation in the metric. The (convergent) sum of the weights
of the (potentially infinite) tail determines the gap orresidualbetween the minimum and
maximum similarity scores that could be attained on exhaustive evaluation. The minimum,
maximum, and residual scores on partial RBO evaluation are all monotonic in depth. A
point score can also be extrapolated.

Being based on simple set overlap, RBO handles non-conjointness in a natural way;
indeed, it does not even assume that the two rankings are drawn from conjoint domains. Set
similarity is a more natural basis for comparing indefinite and truncated lists than the more
widely used one of correlation. In fact, RBO is a member of a family of weighted overlap
measures, defined by taking the convergently weighted average of the overlap at different
depths. Other weighting functions are possible within the same framework, including ones
not based on a simple mathematical progression but derived directly from observed user or
system behaviour.

There are many domains to which RBO could be usefully applied. In our experimental
section, we concentrate on that of information retrieval. Acommon instance of indefinite
rankings found in IR is the results lists returned, in decreasing order of estimated likelihood
of relevance or utility, by retrieval systems. The lists of web pages returned by web search
engines in response to user queries are the most familiar example. We give demonstrations
of the uses of RBO in this environment, and of the problems that are encountered when
instead applying measures that are not appropriate for indefinite rankings.

One reason for comparing the rankings of different retrieval systems is to explore how
similar the two systems are, in the documents they index and the algorithms they use to
determine which are relevant to a query. The comparison issymmetric; one system is
not being measured against the other. In different circumstances, there may be anobjec-
tive ranking (sometimes called the “gold standard”) against which one or moreobserved
rankings are being assessed. The objective ranking could, for instance, be returned by a
precise-but-expensive retrieval algorithm, and the observed ranking by an algorithm that
takes an efficiency-motivated short-cut. In this case, the researcher wishes to measure
how far the observed ranking deviates from the objective. Frequently the assumption in
an objective–observed comparison is that differences suggest a decrease in quality in the
observed ranking, and the similarity measure is employed asa proxy for a full (and poten-
tially expensive) retrieval effectiveness assessment. Wegive examples of both symmetric
and objective–observed comparisons.

2. COMPARING RANKED LISTS

Internet users daily process ranked lists in the form of search engine results. A natural
question to ask is how alike the rankings returned by different engines are. Figure 1 shows
the results given by three popular web search engines to the query‘boarding school effect
on children’. How similar are these results? Are two of the lists closer toeach other than
to the third? A subjective judgment could be made for the results to a single query, but to
generalize about the similarities of the engines themselves, many more queries would have
to be considered. Some repeatable, easily computable, mutually comparable measure of
result similarity is needed. What measure should be used?
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Fig. 1. Results received from the Australian portals of three public search engines to the query‘boarding school
effect on children’, issued on August 28th, 2008.

rnk docid sim
1 FBIS4-13392 6.44
2 FT931-12892 6.13
3 FT921-11935 5.66
4 FT933-7566 5.62
5 FT924-12615 5.49
6 FBIS4-59400 5.46
7 FT943-14288 5.31
8 FT941-373 5.30
9 FT923-12606 5.29

10 FBIS4-11824 5.29
. . . . . . . . .

rnk docid sim
1 FBIS4-13392 6.44
2 FT931-12892 6.13
3 FT923-12606 5.29
4 FBIS4-11824 5.29
5 FBIS4-38863 5.24
6 FBIS4-46500 5.22
7 FBIS4-39925 5.19
8 FBIS4-46560 5.15
9 FBIS4-61085 5.00

10 FBIS3-55156 4.99
. . . . . . . . .

rnk docid sim
1 FBIS4-13392 6.44
2 FT931-12892 6.13
3 FT921-11935 5.66
4 FT933-7566 5.62
5 FT943-14288 5.31
6 FT923-12606 5.29
7 FBIS4-11824 5.29
8 FBIS4-38863 5.24
9 FT942-2178 5.23

10 FBIS4-46500 5.22
. . . . . . . . .

(a) Full Evaluation (b) 1000 Accumulators (c) 400 Accumulators

Fig. 2. Runs returned by an experimental retrieval system toa test topic, under (a) full evaluation of index
information; and (b, c) two different abbreviated evaluations. Each row is a document that the system has returned
for the particular query. The second column gives the document identifier, by which the document is represented
internally. The third column gives the similarity score calculated between each document and the query. The first
column gives the document’s rank in the result; the rank is determined by the similarity score.

Users encounter search engines on the public internet; researchers must wrestle with
them in the lab. Figure 2 gives part of the output of a typical experiment. A shortcut to
speed up query processing called query pruning is being examined. In query pruning, only
the documents which, on an initial evaluation, seem most likely to be relevant are fully
evaluated for relevance. Pruning speeds up processing, butat a possible cost in accuracy.
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Two query pruning levels, one more severe than the other, arebeing tested against full
evaluation. The document rankings produced by each method to depth10 for a particular
query are shown. Full evaluation serves here as an objectiveor “gold-standard” ranking,
against which the two query pruning methods are compared. The researcher wants to
quantify the impact on ranking fidelity that different levels of query pruning have, not just
for this but for perhaps thousands of others of queries. How should the similarity of the
pruned to the full-evaluation runs be measured?

Quantifying the similarities in each of the previous scenarios requires a measure of sim-
ilarity between ranked lists of items. This might seem a well-understood problem in met-
rics, amenable to familiar rank correlation coefficients such as Kendall’sτ [Kendall 1948].
There are, however, characteristics of these rankings thatneed to be carefully considered
before choosing a measure to apply. Nor are these features insome way peculiar to search
results; some or all of these features are observed in many other domains.

The first characteristic to be noted in the above lists is thatthe top of each ranking is
more important than the bottom. The web pages returned by a search engine at the head of
the ranking are more likely to be considered by users than those returned lower down. The
documents ranked at the top of an experimental system’s run will have the most impact
on the retrieval effectiveness score the system achieves. More subtly, the gap between
the estimated similarity of different documents to the query becomes narrower the deeper
the ranking is examined; some of this effect can be seen in thesimilarity scores reported
in Figure 2. A corollary of thetop-weightednessof these rankings is that exchanges or
perturbations in ordering at the top of the ranking are more significant than those at the
bottom. It therefore follows that a desirable feature of a measure of similarity between
top-weighted rankings is that it imposes a stronger penaltyon differences at the top of the
ranking than on differences further down.

The second characteristic of web page and document rankingsis that they areincom-
plete, not providing a full ranking of their domains. As a result, such rankings are mutually
non-conjoint, with some elements turning up in one ranking but not the other. Most rank
similarity measures require the two rankings to be conjoint, and cannot be applied unmodi-
fied to non-conjoint rankings. Even amongst similarity metrics on incomplete rankings, the
majority assume that the underlying full rankings exhaustively order a common domain,
and hence are conjoint. For instance, a common approach to handling non-conjointness is
to assume that items returned in one ranking by cut-off depthk, but not in a second rank-
ing by that depth, are ranked at depthk + 1 in the latter ranking. But the assumption that
the full rankings exhaustively order a common domain is not always valid. For example, a
search engine may not have in its index at all a web page returned by another engine, due to
differences in crawling policies and processes. In such cases, assuming that an unreturned
item is placed at some unobserved rank is unsatisfactory; ifthe former search engine were
aware of the web page in question, it might well rank it in the first position. In general,
therefore, it is preferable for a metric on incomplete rankings to handle non-conjointness
directly, rather than making assumptions about an underlying conjointness.

The characteristics oftop-weightednessandincompletenessobserved in these rankings
are related to a third important characteristic, that ofindefiniteness. The distinguishing
features of an indefinite ranking are that only a prefix of the list is being considered; that the
prefix covers only a small fraction of the list; and, most importantly, that the length of the
prefix is essentially arbitrary. Longer or shorter prefixes could be considered. The choice of
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Prefix length =k

0

0
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5
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10

20

20

∞

∞

S a b c d e f g h i j k lmn o p q r s t u vwx y z . . .

T ab c d e fAh ijk lBno pq r st uvwx yC . . .

S a b c d e f g h i j k lmn o p q r s t u vwx y z . . .

T ab c d e fAh ijk lBno pq r st uvwx yC . . .

S a b c d e f g h i j k lmn o p q r s t u vwx y z . . .

T ab c d e fAh ijk lBno pq r st uvwx yC . . .

S a b c d e f g h i j k lmn o p q r s t u vwx y z . . .

T ab c d e fAh ijk lBno pq r st uvwx yC . . .

S a b c d e f g h i j k lmn o p q r s t u vwx y z . . .

T ab c d e fAh ijk lBno pq r st uvwx yC . . .

SIM(S,T,k)

0

0

0.5

0.5

1

1

0 1

0.30 0.80

0.40 0.75

0.48 0.62

0.56

Fig. 3. Convergence of scores with more information. Beforeexamining either of the rankings, their similarity
score could range anywhere from0 to 1. As the length of the examined prefixk increases, the range of the
possible full similarity score decreases monotonically. These ranges bound the similarity score achievable on
infinite evaluation.

prefix length could even depend upon the degree of similarityobserved: greater fidelity of
measurement might be required where rankings are similar, whereas less is needed where
they are markedly different. And because multiple comparisons might be made in parallel,
as when two search engines are compared on a number of different queries, and each
comparison might have a different depth, scores should be comparable independent of
depth. For these reasons, it is desirable that the measure chosen not have the depth of
assessment embedded in it.

A ranking that has the qualities of top-weightedness, incompleteness, and indefiniteness
described above, is referred to here as anindefinite ranking, and a measure of similarity
between such rankings that meets all of the requirements outlined in the preceding para-
graphs is referred to as asimilarity measure on indefinite rankingsor an indefinite rank
similarity measure. Our aim in this paper is to show that existing rank similarity measures
are not adequateindefiniterank similarity measures, and then to propose a new measure,
rank-biased overlap, that is.

The central idea of our approach is to define a measure on the similarity of the full
rankings, and then bound or estimate the full similarity value based on the list prefixes.
After all, it is typically the similarity of the full rankings that is of interest, not just of their
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Unweighted Weighted
Conjoint Kendall’sτ

Spearman’sρ
Spearman’s footrule
Kolmogorov-Smirnov’sD
Carterette’sdrank

Yilmaz’s τAP

Iman-Conover’srT

Shieh’sτw

Melucci’s τ∗
Blest’sw

Non-conjoint Fagin’sτk, fk, ρk, γk

Bar-Ilan’sρ, footrule
Fagin’s intersection metric
Bar-Ilan’sM
Buckley’s AnchorMAP

Table I. Classification of rank similarity measures.

prefixes. The key to measuring full rankings from their prefixes is to choose a measure for
which a partial, prefix evaluation bounds the value that a full evaluation would produce.
The deeper the prefix that is examined, the narrower the bounds on the full score become.
The idea is illustrated in Figure 3. With no elements examined, the similarity score between
the rankings could take any value in the measure’s legal range; say, anywhere between0
and 1. After seeing the first5 elements in each ranking, the possible scores of a full
evaluation is narrowed to between, say,0.3 and0.8. And after extending the prefixes to
depth20, the range is narrowed to0.48 and0.62, as illustrated in the fourth segment of
Figure 3. Technical details follow, but the principle is to choose a sequence of decreasing
weights over the depths of the comparison, such that the sum of the weights is convergent;
that is, so that the weight of the unseen, conceptually infinite tail of the lists is limited,
and does not dominate the weight of the seen, finite prefix. Such a weighting scheme,
besides being attractive mathematically, is justified representationally by the assumptions
underlying indefinite rankings; that is, that the interest of the consumer of the ranking is
sufficiently top-weighted for a truncated ranking to be satisfactory.

3. RANK SIMILARITY MEASURES

There are many rank similarity measures described in the literature. We categorize them
according to the characteristics of indefinite rankings described in the previous section.
Measures may be unweighted or top-weighted, and may requireconjointness or support
non-conjoint rankings. Non-conjoint rankings are sometimes referred to in the literature as
top-k rankings; that is, prefix rankings evaluated to a fixed depthk. The existing measures
are summarized in Table I and described in this section.

3.1 Conjoint, unweighted measures

The most widely used rank similarity measures are those thatare unweighted and assume
conjointness between the rankings. These predominantly fall into the class ofcorrelation
measures or coefficients. Correlation quantifies the type (positive or negative) and degree
of relation between the two variates in bivariate, paired data. For instance, is height posi-
tively or negatively related to dancing ability, and how strongly so? If the observed variate
pairs (in this example, people) are randomly sampled from a larger population, then the
correlation in the sample can be used to infer the correlation in the population, and to test
for the significance of the latter correlation. Since correlation can be either positive or
negative, correlation coefficients typically range from−1 to 1, with −1 meaning perfect
negative correlation (for rankings, in reverse order),1 meaning perfect positive correla-
tion (in identical order), and0 meaning uncorrelated or “randomly” related [Gibbons and
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S =<

T =<

a

a

b

b

c

c

d

d

e

e

>

>

CST = {(a, b), (a, c), (a, d), (a, e), (c, d), (c, e)}

DST = {(c, b), (d, b), (e, b), (e, d)}

C = |CST | = 6

D = |DST | = 4

M = C − D = 2

τ = M/P (n) = 2/(C + D) = 2/10 = 0.2

Fig. 4. Example working of Kendall’sτ .

Chakraborti 2003, Chapter 11].
One widely-used rank correlation coefficient is Kendall’sτ [Kendall 1948]. To cal-

culateτ , consider every pair of items from the set of items listed by the two (conjoint)
rankings. Assume that there are no ties, that is, no two itemshave the same rank in either
ranking (a variant of Kendall’sτ handles ties, but will not be discussed here). LetC be the
number of concordant pairs, where each ranking places the two items in the same order,
and letD be the number of discordant pairs. ThenM = C − D is our basic statistic.
The maximum valueM can take for rankings of lengthn is the number of distinct pairs
amongstn items,P (n) =

(

n

2

)

= 1
2n(n − 1), and the minimum is−P (n). Then,τ is de-

rived asM/P (n), and ranges from−1, indicating reverse order, to1, indicating identical
order. The valueP (n) − M can be understood as the number of adjacent pairwise swaps
needed to arrange one ranking in the same order as the other, as in a bubble sort.

A working of Kendall’sτ on two example rankingsS andT is given in Figure 4. The set
of concordant pairs is enumerated inCST , whileDST lists the discordant pairs. Discordant
pairs can be found graphically by drawing a straight line between each item inS and the
corresponding item inT , as is done in the figure; whenever two of these lines cross, the
ordering of the respective items is discordant. The total number of pairs is the sum of
C, the number of concordant pairs, andD, the number of discordant pairs, soτ is the
proportion of these pairs that are concordant, linearly adjusted to the range[−1, 1].

Kendall’sτ has a direct probabilistic interpretation. Pick a pair of itemsij at random
from the set ofP (n) pairs. The probabilitypc thatij are ranked in the same order in both
rankings (that is, are concordant) isC/P (n), and the probabilitypd thatij are discordant
is D/P (n). A little algebra shows thatτ = pc − pd. Therefore, aτ of 0 indicates that
a randomly chosen pair is as likely to be concordant as discordant. The rankings are then
said to be uncorrelated. Furthermore, if the ranked items are assumed to be randomly
sampled from a larger population of items,τ on the sample, which is sometimes denoted
t, is an estimate ofτ on the population. Inferential methods beyond point estimation from
(sample)t to (population)τ are also possible, such as calculation of confidence intervals
and testing of the null hypothesis of non-correlation, thatis, that (population)τ = 0.

Kendall’s τ is widely used in the IR domain, and other fields, as a measure of rank
correlation. Melucci [2007] and Yilmaz et al. [2008] list illustrative cases. Butτ has none
of the specific characteristics that we have set out for a measure of similarity on indefinite
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rankings. First, it requires that the two rankings be conjoint. Second, it is unweighted,
placing as much emphasis on disorder at the bottom of the ranking as it does on disorder
at the top. Third,τ values are intrinsically linked to the depth of the rankingk. The
contribution of the concordance of discordance of a single pair ij to the overall score is
normalized byP (k); ask increases, the significance of each disorder decreases.

Moreover, the concept of correlation itself is not helpful or meaningful when applied
to indefinite rankings; that is, to rankings of which only thehead is seen, and where the
head is a small fraction of the entire (conceptual) list. Viewed through such prefixes,
random and negatively correlated rankings will look essentially the same, having few or
no common items in the observed head of the rankings. Indeed,for an indefinite rank
similarity measure to be even considered, there must be an underlying presumption that
the two rankings are strongly correlated, at least at the topof the ranking. What is being
tested must be the departure, not from randomness, but from agreement. Thus, an indefinite
rank similarity measure might be applied to the results of the same query on two search
systems, to determine how different they are, since we wouldexpect different engines to
give similar results to the one query; but it would not be informative to apply it to the results
of two distinct queries on the same search engine, to test howrelated the queries are, since
we would expect the results of different queries to have little in common with each other
in most cases. A basic implication is that an indefinite rank similarity measure should
range not from−1, meaning negatively correlated, but from0, meaning entirely dissimilar
as far as can be seen, which is to say, disjoint. These objections to using the concept of
correlation with indefinite rankings apply not only to Kendall’s τ , but also to other rank
correlation methods, and to the weighted and top-k measures derived from them, which is
to say to the majority of the measures proposed in the literature.

Because indefinite rank similarity measures presume a strong relationship between the
(full) rankings, testing for statistical significance becomes problematic. The standard null
hypothesis in statistical tests on rankings is that the rankings (or rather the variates on the
underlying population they are sampled from) are uncorrelated or randomly related, and
significance is found for them having a (positive or negative) relation. The null hypothesis
that the two rankings are, in contrast, identical is not helpful, as any finding of difference
disproves this null hypothesis. It is true that confidence intervals on a rank correlation
measure can be derived. Similarly, in the case where two rankings are being compared
against a third, objective ranking, it is possible to test that one of the two rankings is
significantly closer to the objective ranking than the other(see Cliff [1996, Chapter 3] for
more details), although this method is not widely applied inthe IR literature. But such
confidence intervals tend to be very wide, meaning that observed sample correlation places
weak bounds on inferred population correlation. In any case, the items in an indefinite
ranking are not typically a random sample from a larger population; rather, the ranking
itself is over the full population, but only the prefix is observed. Additionally, at least
when considering the ordered lists of documents returned byretrieval systems, what is
of interest is generally not the degree of relation on a givenpair of rankings, that is, on
the results to a particular query, but the similarity for allqueries. Here, the (conceptual)
random selection is not of documents, but of queries, and statistical inference can proceed
along the standard lines for estimating population parameters from samples.

Other unweighted measures on conjoint rankings are available. The most widely used
alternative is Spearman’sρ, which is the standard product-moment correlation, calculated
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on ranks rather than magnitudes. Disorders in Spearman’sρ are penalized by the square
of the distance of the disorder. In contrast, Spearman’s footrule penalizes disorders by the
unsquared distance. However, Spearman’s footrule has problems in scaling, sensitivity, and
analysis; see Kendall [1948] for more details. As noted above, the previous rank correlation
measures are most naturally (though not only) suited to testing the null hypothesis of no
correlation, whereas in many applications, the interest israther in degree of departure from
agreement. To address this, Melucci [2007] proposes the useof Kolmogorov-Smirnov’sD,
which is based on Kolmogorov’s goodness-of-fit test. This test, though, only takes account
of the single largest pairwise disordering; other disorderings in the list are ignored. All
these unweighted measures on conjoint rankings share the inadequacies of Kendall’sτ
when applied to indefinite rankings. A more specialized ranksimilarity measure,drank ,
is proposed by Carterette [2009]. The measure requires thatthe ranked items are scored,
and that these scores are aggregates of sub-scores over a common domain (such as systems
ranked by scores over the one topic set). The measure takes account of score differences
and correlations involved in discordant orderings. It is not top-weighted, and requires that
the rankings be conjoint.

3.2 Weighted measures on conjoint rankings

It frequently happens with conjoint rankings that the top ofthe ranking is more significant
than the bottom. A common way of comparing effectiveness metrics in IR, for instance,
is by measuring the similarity between the rankings each metric induces over a set of
retrieval systems. For these comparisons, the researcher will frequently care more about the
ordering of good systems than that of bad. In such circumstances, a measure of similarity
that gives greater weight to higher rankings may be desired.Such measures are often
derived by adapting unweighted rank correlations.

Yilmaz et al. [2008] propose a top-weighted variant on Kendall’s τ calledτAP , based
on the average precision retrieval effectiveness metric. TheτAP measure has the following
probabilistic interpretation. Denote the rankings to be compared asS andT . Randomly
select an itemi other than the top-ranked item inS. Next, randomly select another item
j from those ranked higher thani in S. Then, see ifi and j have the same order in
rankingT . Let the probability of observing concordance in this random experiment bepc,
and the probability of observing discordance bepd. ThenτAP = pc − pd. The similarity
betweenτAP andτ is obvious, the only difference being in the method of selecting the
items. Yilmaz et al. also demonstrate that if discordance isevenly spread throughout the
rankings (not greater at the top than at the bottom), thenτAP = τ . The top-weighting
in τAP comes from the higher probability that itemj is selected from the upper ranks of
rankingS.

The τAP measure is not symmetric. The top-weightedness is defined solely on S, the
ranking on which itemj is selected above itemi. WhereS is the objective ranking, this
lack of symmetry is acceptable, but if the rankings are of equivalent status, the lack of sym-
metry is problematic. Yilmaz et al. propose a symmetric alternative, which is the average
of τAP (S, T ) andτAP (T, S). To extend the probabilistic interpretation, the random ex-
periment is modified to add the first step of randomly selecting a ranking to samplej > i
from. Unlike some other proposals,τAP has no parameter to set the degree or type of
top-weightedness.

Regarding indefinite rankings,τAP satisfies the requirement of top-weightedness. It
does not, however, handle incomplete, mutually disjoint rankings. Nor does it deal with
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indefinite lists as laid out in Section 2: the depth of evaluation is implicitly embedded in
the measure, and scores are not monotonic or bounded as the evaluation depth increases

Other weighted correlation measures on conjoint rankings are described in the literature.
Iman and Conover [1987] apply Pearson’s correlation coefficient not to raw ranks, as with
Spearman’sρ, but to the Savage scores of the ranks. The Savage scoreSi of rank i in a
list of lengthn is

∑n

j=i 1/j = H(n)− H(i) ≈ ln(n/i), whereH(n) is thenth Harmonic
number. Assuming no ties, their coefficient is calculated as:

rT =

(

n
∑

i=1

SRi
SQi

− n

)

/(n − S1)

BecauseSi > Si+1, the coefficientrT is top-weighted.
Shieh [1998] analysesτw, a class of weighted variants on Kendall’sτ , where each pair

of ranks can be assigned its own weighting. A suitable choiceof weights makes this
measure top-weighted. A subfamily of such measures,τ∗, is described and analysed by
Melucci [2009]. Theτ∗ family itself generalizesτAP by allowing arbitrary weights to be
assigned to the lower rank of rank pairs in the objective ranking; Melucci provides the
probability distribution for the measures in the family. The τ∗ family is non-symmetric,
since one of the rankings is designated as the objective ranking. Blest [2000] defines
a rank correlationw based on the difference in area between a polygon defined by the
cumulative ranks of the observed ranking and a polygon defined by the cumulative ranks
of the reversed objective order; this measure, too, is top-weighted. Quade and Salama
[1992] survey earlier work on weighted rank correlations. None of these top-weighted
measures directly handles incompleteness or indefiniteness.

3.3 Unweighted non-conjoint measures

The measures considered so far all assume that the two rankings are conjoint, that is, that
every element occurring in one list also occurs in the other,and vice versa. They do not,
unmodified, handle non-conjoint rankings. One way in which non-conjoint rankings occur
is when longer, conjoint rankings are truncated to a fixed depthk. These truncated rankings
are known astop-k lists.

Similarity measures on top-k and other non-conjoint rankings are frequently derived
through the modification of a conjoint rank similarity measure. One such modification
is simply to ignore non-conjoint elements. This approach isin general unsatisfactory,
however, since it throws away information. For instance, ifKendall’s τ were modified
in this way, then the rankings<ab???> and<a???b>, where? denotes a non-conjoint
element, would be regarded as completely similar, when clearly they are not.

Rather than ignoring elementi which appears in rankingS and not in rankingT , a more
satisfactory approach is to treati as appearing in rankingT at rankk +1 or beyond, where
the depth ofT is k. This agrees with the concept of top-k rankings, which assumes that
the full domains are conjoint (that is, each element is ranked somewhere in the full list),
but that only the topk positions are visible.

Placing unranked items below rankk is the approach taken by Fagin et al. [2003]. They
adapt both Kendall’sτ and Spearman’s footrule in this way to handle top-k lists. Forτk,
the top-k version ofτ , if elementi appears in rankingS but not rankingT , it is assumed
to be ranked beneath every item that does appear in rankingT . The only ambiguity occurs
if elementsi andj both appear in rankingS, but neither appear in rankingT . In this case,
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Fagin et al. provide for a parameterizable penalty of between 0 (assumed concordant) and
1 (assumed discordant). They propose that the default value for this penalty should be0,
as this fixes the score for conjoint but reversed as close as possible to half way between
identical and disjoint. A top-k version of Spearman’s footrule,fk, is similarly defined.

The measuresτk andfk are not top-weighted, but similar assumptions could be applied
to top-weighted conjoint rank measures to derive weighted top-k measures. Weightedness
makes the assumption of unlisted elements being ranked beyond rankk more complex,
though. For instance, inτAP , when randomly selecting an itemi and a higher-ranked item
j, the question arises of whether the items beyond depthk are to be regarded as above
or below each other. In particular,τAP does not (as currently defined) handle tied items,
so the non-conjoint elements cannot simply be placed at rankk + 1. Instead, Yilmaz
et al. [2008] propose that any such elements be excluded; butthis loses information about
implied misorderings, as described above.

The desideratum stated by Fagin et al. that conjoint but reversed top-k rankings should
score roughly half way between identical and disjoint is nota compelling one. How close
a relatedness reverse conjointness indicates depends on how largek is in relation to the
full list size n. Moreover, conjoint but reversed to depthk is more a peculiarity than a
meaningful characteristic for top-k lists, since by definition it cannot continue to be true
if the evaluation is then extended to depthk + 1. Partly at fault is a desire to produce a
measure that is similar in form to correlation measures on conjoint lists; having a negative
score for a top-k measure is hardly meaningful. More fundamentally, though,correlation-
based measures do not properly reflect the fact that these areindefinite rankings, and that
the choice ofk as the cutoff point is essentially an arbitrary one.

In addition to Kendall’sτ and Spearman’s footrule, Fagin et al. describe a top-k variant
of Spearman’sρ. The treatment of non-conjoint elements is similar to that for the other
methods; however, the resulting measure does not fall into the same equivalence class.

Goodman and Kruskal’sγ is a correlation coefficient related to Kendall’sτ , in which
tied items are effectively ignored [Goodman and Kruskal 1954]. Fagin et al. also extendγ
to the top-k case by regarding the pairij both appearing in listS but neither appearing in
list T as tied, and therefore ignoring it.

Bar-Ilan [2005] and Bar-Ilan et al. [2006] adapt Spearman’sρ and Spearman’s footrule
respectively to the top-k case by excluding non-conjoint elements (rather than treating
them as occurring beyond depthk) and calculating the coefficients on the condensed lists.
Bar-Ilan et al. point out the loss of information that condensing lists in this way entails.

3.4 Weighted non-conjoint measures

Most of the measures discussed so far have been founded upon correlation. When dealing
with non-conjoint lists, it is also possible, and arguably more natural, to start instead from
set intersection. A simple similarity measure on top-k lists would be the size of intersection
or overlap between the two rankings, calculated as the proportion of the ranking length;
that is,|S ∩ T |/k. Of course, such a measure, while directly handling non-conjointness,
takes no notice of ranking, and therefore is not top-weighted.

The idea of overlap can be extended by considering, not simply the overlap at depth
k, but the cumulative overlap at increasing depths. For eachd ∈ {1 . . . k}, calculate
the overlap atd, and then average those overlaps to derive the similarity measure. This
measure is described by Fagin et al. [2003] and called the intersection metric, and was
simultaneously discovered by Wu and Crestani [2003] and named average accuracy. We
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d S:d T:d AS,T,d AO(S, T, d)

1 <a> <z> 0.000 0.000
2 <ab> <zc> 0.000 0.000
3 <abc> <zca> 0.667 0.222
4 <abcd> <zcav> 0.500 0.292
5 <abcde> <zcavw> 0.400 0.313
6 <abcdef> <zcavwx> 0.333 0.317
7 <abcdefg> <zcavwxy> 0.286 0.312

n <abcdefg. . .> <zcavwxy. . .> ? ?

Fig. 5. Average overlapAO of two lists to increasing depths, along with their proportional overlap or agreement
A at each depth. Average overlap continues to increase even asagreement decreases, and the value at depthk
does not bound the value at arbitrary depthn > k. The notation used is described in more detail in Section 4.1.

refer to it as average overlap (AO). Because of its cumulative nature, AO is top-weighted:
rank 1 is included in every subset, rank 2 in every subset but the first, and rankr in subsets
r throughk but not1 throughr−1. Thus, AO is the first of the measures we have examined
that both handles non-conjoint lists and is top-weighted, and indeed is one of the very few
described in the literature. Figure 5 gives a sample calculation.

Although average overlap is weighted and non-conjoint, andis closer to a satisfactory
indefinite rank similarity measure than any of the previous alternatives, it fails our criteria
for an indefinite measure because it is a measure not on infinite lists, but on their prefixes.
One might be tempted to attempt the conversion of AO to an indefinite measure by con-
ceiving of a score on the full lists, and then using the prefix evaluation to set bounds on
it; that is, calculate AO@k (or a derivative) and use it to limit AO@∞. But such an at-
tempt fails, due to the measure’s non-convergence. The weight of the infinite tail always
dominates that of the finite prefix, no matter how long the prefix is. A proof is given in
Appendix A; intuitively, we see that each overlap to depthk has weight1/k under AO@k,
but weight1/∞ under AO@∞. Thus, prefix evaluation sets no bounds on the full score:
after comparingk elements, the AO@∞ score could still be anywhere in the range[0, 1],
not matter how largek is.

Average overlap has another peculiarity related to monotonicity in depth, which is that
finding greater agreement with deeper evaluation does not necessarily lead to a higher
score, nor finding decreased agreement to a lower one. For instance, in Figure 5, the
elements newly revealed at depths4 through6 are all disjoint, yet the AO score keeps
increasing. This counter-intuitive behaviour occurs because in calculating AO, the contri-
bution of each overlap at depthd is only considered up tok, whereas in fact it continues
to contribute up ton asn goes to infinity; increasing the evaluation depthk thus captures
more of this residual contribution.

Bar-Ilan et al. [2006] describe and employ a measureM which is the normalized sum
of the difference in the reciprocal of the ranks of each item in the two lists, with items not
ranked in one list assumed to occur at depthk + 1 in that ranking. Like AO, this measure
is top-weighted and handles non-conjointness, but is dependent on the cutoff depthk.

Buckley [2004] proposes the AnchorMAP measure, which is based upon the retrieval ef-
fectiveness evaluation metric, (mean) average precision (MAP). Retrieval evaluation met-
rics score a document ranking according to the relevance of the documents it contains. In
AnchorMAP, one of the rankings under comparison is chosen asthe objective ranking, and
its firsts documents are treated as relevant; Buckley suggestss = 30 as a reasonable value.
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The MAP score of the other ranking is then calculated to depthk, based on these artificial
relevance judgments. AnchorMAP is asymmetric. It is top-weighted, but weights are not
fixed for ranks. The metric is non-monotonic both ins andk.

A referee of this work suggests an alternative mechanism, based on a rank-weighted
evaluation metric such as discounted cumulative gain (DCG)[Järvelin and Kekäläinen
2002]. In a rank-weighted metric, each ranki is assigned a fixed weightwi, and the docu-
ment at that rank makes a contributionwi · ri to the ranking’s effectiveness score, whereri

is the document’s assessed degree of relevance. A similarity measure between two rank-
ingsS andT can then be derived by assigning fractional relevancies to documents based
on their rank weight inS, and then using these relevancies to calculate the effectiveness
metric onT . Such a measure would be symmetric, and seems likely to possess some of the
properties sought in an indefinite rank similarity measure,provided that rank weights are
chosen so as to create a convergent measure (DCG’s weights ofwi = 1/log(i+1) do not).
The need for properties such as convergence, and the need to ensure sensible behaviour in
limiting cases, means that developing an approach of this kind is not straightforward, and
is an area for future investigation. How such an approach would ultimately compare with
RBO as it is defined here is not clear.

4. RANK-BIASED OVERLAP

The previous section has shown that the rank similarity measures described in the literature
do not meet all the criteria we have identified for similaritymeasures on indefinite rank-
ings. We now propose a new measure which does meet these criteria: rank-biased overlap
(RBO). This is an overlap-based metric, superficially similar to average overlap. The key
insight behind RBO is to bias the proportional overlap at each depth by a convergent series
of weights (that is, a series whose sum is bounded). As a result, the infinite tail does not
dominate the finite head. Therefore, similarity assessmentusing RBO consists of using
prefix evaluation to set upper and lower bounds (Section 4.2)on the score which full eval-
uation (that is, comparison to infinite depth) could achieve(Section 4.1). In Section 4.3
we derive the weight of each rank under RBO, and therefore theweight of the prefix. The
precise full RBO score is, of course, not knowable without evaluation to infinite depth;
however, in situations where a single value is needed, a reasonable point estimate can be
extrapolated (Section 4.4). Because RBO is a similarity, not a distance, measure, it is not
a metric; however,1 − RBO is a metric, as we prove in Section 4.5. Finally, Section 4.6
considers the handling of ties and of rankings of different lengths.

4.1 RBO on infinite lists

We begin by laying out some notation. LetS andT be two infinite rankings, and letSi be
the element at ranki in list S. Denote the set of the elements from positionc to position
d in list S, that is{Si : c ≤ i ≤ d}, asSc:d. Let S:d be equivalent toS1:d, andSc: be
equivalent toSc:∞. At each depthd, theintersectionof listsS andT to depthd is:

IS,T,d = S:d ∩ T:d . (1)

The size of this intersection is theoverlapof listsS andT to depthd,

XS,T,d = |IS,T,d| , (2)
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and the proportion ofS andT that are overlapped at depthd is theiragreement,

AS,T,d =
XS,T,d

d
· (3)

For brevity, we will refer toId, Xd, andAd when it is unambiguous which lists are being
compared. Using this notation, average overlap can be defined as:

AO(S, T, k) =
1

k

k
∑

d=1

Ad (4)

wherek is the evaluation depth. An example calculation has alreadybeen shown in Fig-
ure 5.

Consider the family of overlap-based rank similarity measures of the form:

SIM(S, T, w) =
∞
∑

d=1

wd · Ad (5)

wherew is a vector of weights, andwd is the weight at positiond. Then0 ≤ SIM ≤
∑

d wd, and ifw is convergent, eachAd has a fixed contributionwd/
∑

d wd (if w is not
convergent, then the denominator of this expression goes toinfinity). One such convergent
series is the geometric progression, where thed th term has the valuepd−1, for 0 < p < 1,
and the infinite sum is:

∞
∑

d=1

pd−1 =
1

1 − p
(6)

Settingwd to (1 − p) · pd−1, so that
∑

d wd = 1, derives rank-biased overlap:

RBO(S, T, p) = (1 − p)

∞
∑

d=1

pd−1 · Ad . (7)

Rank-biased overlap falls in the range[0, 1], where0 means disjoint, and1 means iden-
tical. The parameterp determines how steep the decline in weights is: the smallerp, the
more top-weighted the metric is. In the limit, whenp = 0, only the top-ranked item is
considered, and the RBO score is either zero or one. On the other hand, asp approaches
arbitrarily close to1, the weights become arbitrarily flat, and the evaluation becomes arbi-
trarily deep.

Rank-biased overlap has an attractive interpretation as a probabilistic user model. Con-
sider a user comparing the two lists. Assume they always lookat the first item in each list.
At each depth down the two lists, they have probabilityp of continuing to the next rank,
and conversely probability1 − p of deciding to stop. Thus, the parameterp models the
user’spersistence. A similar user model was introduced for the retrieval effectiveness met-
ric rank-biased precision[Moffat and Zobel 2008]. Once the user has run out of patience
at depthd, they then calculate the agreement between the two lists at that depth, and take
this as their measure of similarity between the lists. LetD be the random variable giving
the depth that the user stops at, andP (D = d) be the probability that the user stops at any
given depthd. The expected value of this random experiment is then:

E[AD] =
∞
∑

d=1

P (D = d) · Ad . (8)
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SinceP (D = d) = (1 − p) · pd−1, it follows thatE[AD] = RBO(S, T, p). Indeed, this
probabilistic model can be extended further by observing that Ad itself gives the proba-
bility that an element randomly selected from one prefix willappear in the other. Such
probabilistic models help to interpret the meaning of the similarity scores achieved.

4.2 Bounding RBO from prefix evaluation

Rank-biased overlap is defined on infinite lists. Because it is convergent, the evaluation of
a prefix sets a minimum and a maximum on the full score, with therange between them
being the residual uncertainty attendant upon prefix, rather than full, evaluation. In this
section, formulae for the minimum score, RBOMIN , and the residual, RBORES, are derived.

Simply calculating Equation 7 to prefix depthk (let us call this RBO@k) sets a lower
bound on the full evaluation, but not a tight one. Indeed, if RBO@k > 0, it is certain that
RBO > RBO@k. This is because the overlap in the prefix also contributes to all overlaps
at greater depths. (The same problem was observed with average overlap in Figure 5.)
More formally, for alld > k, Id ⊇ Ik, meaningXd ≥ Xk andAd is at leastXk/d. Thus,
even if all items beyond the prefix turned out on full evaluation to be disjoint, the sum of
the agreements at depths beyondk would be:

(1 − p)

∞
∑

d=k+1

Xk

d
· pd−1 . (9)

To set a true minimum on full evaluation, Equation 9 is added to the RBO@k score. The
infinite sum can be resolved to finite form by the useful equality:

∞
∑

i=1

pi

i
= ln

1

1 − p
, 0 < p < 1 (10)

which is derived by integrating both sides of Equation 6. After some rearrangement, we
arrive at:

RBOMIN(S, T, p, k) =
1 − p

p

(

k
∑

d=1

(Xd − Xk) ·
pd

d
− Xk ln(1 − p)

)

(11)

wherek is the length of the prefix. TheRBOMIN(S, T, p, k) value gives a tight lower
bound on the fullRBO(S, T, p) score. It follows from this thatRBOMIN(S, T, p, k) is
monotonically non-decreasing on deeper evaluation; that is,

∀j > 0, RBOMIN(S, T, p, j + 1) ≥ RBOMIN(S, T, p, j) . (12)

Prefix evaluation can also be used to derive a tight maximum onthe full RBO score;
the residual uncertainty of the evaluation is then the distance between the minimum and
maximum scores. The maximum score occurs when every elementpast prefix depthk in
each list matches an element in the other list, beginning with those elements in the prefix
that were previously unmatched. Figure 6 illustrates this with an example. The prefix
length isk = 3, and the overlapXk at this depth is1. At each successive depth, two more
elements are added, one to each ranking. Therefore, the maximum overlap increases by
two until agreement is complete, which occurs at depthf = 2k − Xk. Beyond that depth,
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d S:d T:d min(Ad) max(Ad) weight

1 <a> <c> 0/1 0/1 p0

2 <ab> <cb> 1/2 1/2 p1

3 <abd> <cbe> 1/3 1/3 p2

4 <abd?[c]> <cbe?[a]> 1/4 3/4 p3

5 <abd??[ce]> <cbe??[ad]> 1/5 5/5 p4

6 <abd???[cef]> <cbe???[adf]> 1/6 6/6 p5

...
...

...
...

...
...

d <abd. . .> <cbe. . .> 1/d d/d pd−1

Fig. 6. Minimum and maximum agreements between two indefinite lists at different depths, with evaluation
finishing at depth3. Unseen items for ranks4 throughd are marked as?. Example hypothetical maximally
agreeing elements for these ranks are shown in square brackets.

agreement is fixed at1. The residual RBO value is therefore:

RBORES(S, T, p, k) = (1 − p)





f
∑

d=k+1

2(d − k)

d
pd−1 +

∞
∑

d=f+1

(

1 −
Xk

d

)

pd−1



 .

(13)
Some rearranging, and again using Equation 10 to reduce the infinite sum, gives:

RBORES(S, T, p, k) = pf +
1 − p

p

{

2

f
∑

d=k+1

(d − k)pd

d
− Xk

[

ln
1

1 − p
−

f
∑

d=1

pd

d

]}

.

(14)
One might prefer the residual uncertainty of prefix evaluation to be dependent only on

the prefix length, not on prefix content. This is not the case with RBO, as prefix agreement
determines how long it takes before the difference between the maximum and minimum
agreements at subsequent depthsd reaches the stationary value of1−Xk/d, as well as this
stationary value itself. It is possible, though, to set a range on the values that RBORES can
take for a given prefix length, irrespective of prefix contents. The residual will be smallest
whenXk = k, that is, when the prefix is conjoint. In this case, Equation 13 becomes:

RBOmin
RES(∗, ∗, p, k) = (1 − p)

∞
∑

d=k+1

(

1 −
k

d

)

pd−1 (15)

= pk − k ·
1 − p

p
·

(

ln
1

1 − p
−

k
∑

d=1

pd

d

)

. (16)

The residual will be largest whenXk = 0, that is, when the prefix is disjoint. Then, we
have:

RBOmax
RES(∗, ∗, p, k) = (1 − p)

(

2k
∑

d=k+1

2(d − k)

d
· pd−1 +

∞
∑

d=2k+1

pd−1

)

(17)

= 2pk − p2k − 2k ·
1 − p

p
·

2k
∑

d=k+1

pd

d
. (18)

It also follows that RBOmin
RES will occur when RBOMAX = 1, and RBOmax

RES will occur when
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RBOMIN = 0. These formulae are useful in experimental planning. For instance, if two
search engines are to be compared on multiple queries, then afirst-page or ten-result eval-
uation withp = 0.9 will give a maximum residual of0.254, for a range of0.000 to 0.254,
and a minimum residual of0.144, for a range of0.856 to 1.000. These residuals can be
decreased either by examining more results or by using a lower value ofp.

Prefix evaluation, then, can be used to set tight bounds upon the full RBO score, meeting
our main criteria for a similarity measure on indefinite rankings. The upper and lower limits
are monotonically non-increasing and non-decreasing respectively as evaluation continues
further down the two lists, in the manner illustrated in Figure 3. Also, RBORES is monoton-
ically decreasing with evaluation depth: the greater the information about the two lists, the
smaller the degree of uncertainty about their full similarity. These monotonic properties are
what qualifies RBO to be a satisfactory similarity measure onindefinite rankings. Because
of them, the RBO measure provides consistent values for whatever evaluation depthk hap-
pens to be chosen, and maintains consistency as this evaluation depth increases. Moreover,
the score at any depth of partial evaluation gives strict limits on the score that would be
achieved by full evaluation. In contrast, top-k measures are measures only on the lists to
depthk, and provide no bounds on the value of full evaluation. Even with partial evalua-
tion, RBO is a measure on the full lists.

4.3 Rank weights under RBO

The agreement at each depthd under RBO is assigned a weight. This weight, however, is
not the same as the weight that the elements at rankd themselves take, as these elements
contribute to multiple agreements. In this section, we derive a formula for the weight of
each rank under RBO. From this, the weight of a prefix can be calculated, which in turn
helps guide the choice of thep parameter in the RBO evaluation

The pair of elements at depthd makes no contribution to partial agreements prior tod,
takes up1/d th of Ad, 1/(d +1) th of Ad+1, and so forth. Their precise contribution to the
overall score depends on which depth, if any, they are matched at. Consider the difference
in the final score between, on the one hand, both elements at depthd being matched at or
prior to depthd (maximum agreement), and, on the other, neither element being matched
at infinite depth (minimum agreement). We will refer to this difference as theweightof
rank d, denoted asWRBO(d). Accounting for the weighting of the agreementswd =
(1 − p) · pd−1 (Equation 7), the weight of rankd under RBO is therefore:

WRBO(d) =
1 − p

p

∞
∑

i=d

pi

i
(19)

The weight of the prefix of lengthd, WRBO(1 : d), is then the sum of the weights of the
ranks to that depth:

WRBO(1 : d) =

d
∑

j=1

WRBO(d) =
1 − p

p

d
∑

j=1

∞
∑

i=j

pi

i
(20)

which after some rearrangement, and using Equation 10 to resolve the infinite sum, gives:

WRBO(1 : d) = 1 − pd−1 +
1 − p

p
· d ·

(

ln
1

1 − p
−

d−1
∑

i=1

pi

i

)

. (21)
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Of course, the weight of the tail,WRBO(d + 1 : ∞), is 1 − WRBO(1 : d). And since
WRBO(1 : d) is invariant on the length of the list, it follows that the weight of the infinite
tail does not dominate that of the finite head.

Equation 21 helps inform the choice of the parameterp, which determines the degree of
top-weightedness of the RBO metric. For instance,p = 0.9 means that the first10 ranks
have86% of the weight of the evaluation; to give the top50 ranks the same weight involves
takingp = 0.98 as the setting. Thus, the experimenter can tune the metric toachieve a
given weight for a certain length of prefix.

4.4 Extrapolation

Definitions of RBOMIN and RBORES have been formulated in Section 4.2. The RBO score
can then be quoted either as base+residual or as a min–max range. For many practical and
statistical applications, though, it is desirable or necessary to have a single score or point
estimate, rather than a range of values.

The simplest method is to use the base RBO value as the single score for the partial
evaluation. The base score gives the known similarity between the two lists, the most
that can be said with certainty given the information available. However, the base score
is dependent on the evaluation depth,k. The highest base score that can be achieved for
depthk evaluation using persistencep is:

1 − pk −
k(1 − p)

p

(

k
∑

d=1

pd

d
+ ln(1 − p)

)

(22)

which, for largep and smallk, is well short of1. There are practical situations in which a
list is conceptually indefinite but where only the first few items are available. For instance,
if two search engines each only supply7 results to a query, and thep parameter employed
is 0.9, then even if both results lists are identical (to the supplied depth), the base RBO
score will only be0.767. In such situations, base RBO can easily become a measure of
result list length, not difference.

An alternative formulation for a single RBO score is to extrapolate from the visible lists,
assuming that the degree of agreement seen up to depthk is continued indefinitely. Denote
as RBOEXT the result of such an extrapolation. To derive a direct formula for RBOEXT, we
start from Equation 9, which gives the adjustment to the RBO value, calculated on thek
seen items, to make it a true minimum value. The assumption for the lower bound is that the
remaining items are all non-conjoint, so that the agreementat ranksr > k isXk/r. Instead,
extrapolation assumes that the degree of agreement seen atk is expected to continue to
higher ranks, that is, that forr > k, Ar = Xk/k. (The resulting agreement values may not
in reality be possible, because they would require fractional overlap. Consider, though, the
analogy of the expected value of a random experiment not having to be a possible outcome
of that experiment; for instance, the expected value of rolling a fair six-sided die is3.5.)
Constant agreement considerably simplifies things, resulting in:

RBOEXT(S, T, p, k) =
Xk

k
· pk +

1 − p

p

k
∑

d=1

Xd

d
· pd · (23)

It should be noted that this is not equivalent to simply extrapolating a score between the
numeric values of RBOMIN and RBOMAX . Since those scores are weighted to higher ranks,
such an extrapolation would also be weighted to the agreement observed in higher ranks.
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Instead, RBOEXT extrapolates out fromAk, that is, the agreement observed at evaluation
depthk.

Extrapolated RBO is not monotonic; it could either increaseor decrease as the prefix
lengthens. However, RBOEXT will always increase with increasing agreement and decrease
with decreasing agreement. That is, ifAd+1 > Ad thenRBOEXT(d + 1) > RBOEXT(d),
and conversely ifAd+1 < Ad thenRBOEXT(d + 1) < RBOEXT(d), for all d > 0. It was
noted in Section 3.4 that this property is not observed by average overlap. And of course,
RBOEXT is bounded, by RBOMIN and RBOMAX .

Where a point score is needed, there is the choice of RBOBASE or RBOEXT. In many
cases, evaluation will be performed deeply enough, andp will be small enough (say,
p ≤ 0.9 and depth of50), that the residual disappears at normal reporting fidelity, leaving
RBOEXT and RBOBASE as indistinguishable and almost-exact estimates of the true RBO
score. Where the residual is noticeable, RBOEXT should in general be the preferred point
estimate, in part because it is less sensitive than RBOBASE to the actual evaluation depth,
which may vary between different ranking pairs in the one experiment. For noticeable
residuals, the full reporting format is RBOEXT[RBOMIN – RBOMAX ].

4.5 Metricity

Since RBO measures similarity, not distance, it is not a metric. However, RBO can be
trivially turned into a distance measure, rank-biased distance (RBD), by RBD= 1−RBO.
We now prove that RBD is a metric.

PROPOSITION 4.1. RBD is a metric.

Proof. Since RBO is clearly symmetric, it is sufficient to show that the triangle inequality
holds, that is,

∀R, S, T, RBD(R, T, p) ≤ RBD(R, S, p) + RBD(S, T, p) · (24)

Now

RBD(S, T, p) = 1 − RBO(S, T, p)

= 1 − (1 − p)

∞
∑

d=1

|S:d ∩ T:d|

d
· pd−1

= (1 − p)
∞
∑

d=1

|S:d △ T:d|

2d
· pd−1 (25)

where△ is symmetric difference, that is, the elements that are in one set or the other but
not both. The last simplification is derived from the fact that:

2d = |S:d| + |T:d| = |S:d △ T:d| + 2 · |S:d ∩ T:d|

⇒ 1 −
|S:d ∩ T:d|

d
=

|S:d △ T:d|

2d
(26)

SoRBD(S, T ) is the weighted sum of these|S:d△T:d|, where the weighting is invariant
on the contents of the list. Therefore, we need only demonstrate that

∀d, |R:d △ T:d| ≤ |R:d △ S:d| + |S:d △ T:d| (27)

The remainder of the proof follows Fagin et al. [2003]. Consider an elementx ∈ R △ T .
Assume, without loss of generality, thatx ∈ R; therefore,x 6∈ T . There are two cases:
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x ∈ S, in which casex ∈ S △ T butx 6∈ R △ S; or x 6∈ S, in which casex ∈ R △ S but
x 6∈ S△T . Either way, if an element occurs on (contributes to) the left side of Equation 27,
it must occur on (contribute to) the right side. Equation 27 then holds, and therefore so does
Equation 24. �

Similar proofs hold for the metricity of1 − RBOMIN and1 − RBOEXT.

4.6 Ties and uneven rankings

Ties may be handled by assuming that, ift items are tied for ranksd to d+(t− 1), they all
occur at rankd. To support this, we modify the definition of agreement givenin Equation 3:

AS,T,d =
2 · XS,T,d

|S:d| + |T:d|
· (28)

Equations 3 and 28 are equivalent in the absence of ties extending over rankd, but in the
presence of such ties, the former formulation can lead to agreements greater than1.

It occasionally happens that indefinite rankings are compared with different evaluation
depths on each ranking. One cause of such irregularity is that the providers of the rankings
are returning lists shorter than the evaluation depth chosen for the assessment and different
from each other. We will call such listsuneven rankings. For instance, for an obscure but
not entirely nonsensical query, one public search engine might return five results, another
might return seven. These can still be treated as indefinite rankings; there are many more
web pages beyond these depths, but they have not met the engine’s threshold of estimated
relevance. For the following discussion, letL be the longer of the two lists, with lengthl,
andS be the shorter, with lengths.

The formula for RBOMIN given in Equation 11 handles uneven rankings without modi-
fication, since it is implicitly assumed that∀d ∈ {s+1, . . . , l}, Sd 6∈ L; that is, we assume
maximal disjointness and are done with it. Conversely, RBOMAX is found by assuming
that every item in the extension ofS matches one item inL, increasing the overlap by one.
Therefore,∀d ∈ {s + 1, . . . , l}, Xmax

d − Xmin
d = d − s, regardless of the contents of the

preceding lists. The definition of RBORES on uneven lists then becomes:

RBORES(L, S, l, s) =

1 − p

p





l
∑

d=s+1

d − s

d
pd +

f
∑

d=l+1

2d − l − s

d
pd +

∞
∑

d=f+1

(

1 −
Xl

d

)

pd



 (29)

wheref = l + s−Xl is the rank at which maximum agreement becomes1. Removing the
infinite sum using Equation 10 once again, and simplifying, results in:

RBORES(L, S, l, s) =

ps + pl − pf −
1 − p

p

(

s

f
∑

d=s+1

pd

d
+ l

f
∑

d=l+1

pd

d
+ Xl

[

ln
1

1 − p
−

f
∑

d=1

pd

d

])

(30)

Modifying RBOEXT to handle uneven rankings is less straightforward. The extrapolation
for even rankings is achieved by assuming the agreement in the unseen part of the lists is
the same as in the prefixes. However, agreement betweenL andS is not known to depthl.
And while agreement to depths is known, truncation at this depth loses information on the
degree of overlap betweenL(s+1):l andS. Therefore, extrapolation for uneven rankings
must separately extrapolate agreement forS(s+1):l.
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Consider the method of extrapolation for even lists. The agreementAk at common
evaluation depthk is assumed to continue unchanged at further evaluation depths. In other
words,∀d > k, Ad = Ak, and specificallyAk+1 = Ak. Referring to the definition of
agreement in Equation 3, this means that

|S:k+1 ∩ T:k+1|
def
= Xk+1 = Xk + Ak . (31)

If 0 < Ak < 1, which is generally the case, then working backwards through the formula
implicitly requiresXd>k to take on fractional values. This suggests the concept of degree
of set membership. An element occurring in the seen prefix will have a membership degree
of 1 or 0, depending on whether it is matched in the other list at the current evaluation
depth. An unseen element, however, is assigned under extrapolation a (usually fractional)
membership degree; one could think of it as a “probability ofmembership”. The elements
Sk+1 andTk+1 in Equation 31, for even lists, each have membershipAk. In the case of
uneven lists, the conjointness ofL(s+1):l is known to be either0 or 1. Nevertheless, the
membership of the unseen elementsS(s+1):l can still be set toAs. This will provide an
assumedAl, which can be extrapolated for elements beyond depthl, unseen in both lists.
The formula then is:

RBOEXT(L, S, l, s) =
1 − p

p

(

l
∑

d=1

Xd

d
pd +

l
∑

d=s+1

Xs(d − s)

sd
pd

)

+

(

Xl − Xs

l
+

Xs

s

)

pl

(32)
Note thatXl here means the overlap on the seen lists at depthl, even though|S| < l; the
maximum value ofXl is therefores.

Calculating RBOEXT on uneven lists in this way maintains two important criteriamet
by extrapolation on even lists. First, RBOMIN ≤ RBOEXT ≤ RBOMAX . And second,
RBOEXT is non-increasing with deeper evaluation ifSs+1 or Ll+1 is found to be disjoint,
and non-decreasing if the element is found to be conjoint.

5. EXPERIMENTAL DEMONSTRATIONS

Section 4 has defined the RBO metric, and described how it meets the criteria for an indef-
inite rank similarity measure, which the measures discussed in Section 3 failed to do. We
now illustrate the use of RBO, first in comparing document rankings produced by public
search engines, and secondly as an experimental tool in the research laboratory of the IR
system developer. These domains involve non-conjoint rankings, so rank similarity mea-
sures such asτ that require conjointness cannot be applied. The only viable alternatives to
RBO are other non-conjoint rank similarity measures. We provide comparisons with two
of these: Kendall’s distance (KD) and average overlap (AO).

5.1 Comparing search engines

We begin by using RBO to compare the results returned by public search engines. Twenty
search engine users, drawn from the authors’ colleagues andacquaintances, were asked
to provide search queries taken either from their recent search history or as examples of
queries the might currently be searching for. Each user returned between three and eight
queries, making a total of113 queries (available from the authors on request), collected
from mid-August to early September 2008. The queries were then submitted once a day to
a number of public search engines, beginning on October 20th, 2008, and running up until
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Name URL Notes
Google www.google.com Global Google. Google maps, news, blog

results excluded; Google books results
retained.

Yahoo search.yahoo.com Global Yahoo!.
Live search.live.com Global Live.
Ask www.ask.com Ask.
Dogpile www.dogpile.com Dogpile. Maximum 80 results.
Sensis www.sensis.com.au Sensis. Maximum 10 results. Not restricted

to Australian-only results.
Alexa www.alexa.com Alexa.
A9 a9.com A9. Maximum 20 results. Ceased offering

general web search in January 2009. Prior
to that, results based on Alexa.

Google (AU) www.google.com.au Google Australia search portal. Not
restricted to Australian-only results.

Yahoo (AU) au.search.yahoo.com Yahoo! Australia search portal. Not
restricted to Australian-only results.

Live (AU) www.live.com Specified\?mkt=en-au. Not restricted to
Australian-only results.

Table II. Public search engines searched.

February 26th, 2009. Eleven different search engines were searched, as listed in Table II.
Three of these are the Australian portals of international search engines. In every case,
queries were submitted directly to the web site via URL manipulation and the HTML re-
sults list was scraped; the search APIs of these engines werenot used. Except where noted,
the top100 results were retrieved from each search engine. In a given results list, only the
first result from any given host was retained; most search engines only provided a maxi-
mum of two results from the one host, with the second being folded directly under the first.
Result URLs were captured as returned by the search engines;no further normalization
was performed.

Public search engines commonly return ten search results per page, including on the
first results page. Therefore a reasonable choice of thep parameter is one that sets the
expected number of results compared by thep-persistent user to10. This is achieved by
settingp to 0.9. As described in Section 4.3, this is equivalent to giving the first ten results
86% of the weight in the similarity comparison. It is also convenient to concentrate on
the top ten results because, for interface reasons, it was not practical to retrieve more than
the first ten results from some search engines. This again illustrates the importance of a
rank similarity measure being monotonic in depth: we will becomparing rankings with a
variety of depths, some going to depth100, others to depth10, and yet others somewhere
in between, and we want the similarity scores produced to be comparable across all cases.

Table III gives the mean RBOEXT, p = 0.9, between the different global search engines
across all113 queries on December 5th, 2008. The key to interpreting the numerical value
of these scores is to remember that RBO is a measurement of expected overlap, or equiv-
alently of a weighted mean of overlap at different depths. Thus, the RBO score of0.25
between Google and Live can very roughly be understood as saying that the two systems
have 25% of their results in common (as a decaying average over increasing depths). Con-
trary perhaps to expectations, different search engines are in fact returning quite different
results, or at least result orderings, to queries; only a handful have an RBO above0.25. By
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Fig. 7. Mean RBO between Google and other search engines for different values of thep parameter. Raisingp
increases the depth of comparison.

the date of this run of queries, Alexa had started to draw its results from Live, which is
why their RBO score is so high. Previously, Alexa had been an independent search engine,
which A9 drew its general search results from, and these two engines had a very high RBO
(around0.9). Not long after December 5th, 2008, A9 stopped offering general-purpose
web search and became solely a product search aggregator. The Dogpile engine aggre-
gates results from Google, Yahoo, Live, and Ask. The RBO figures suggest that Google
results are given the strongest weighting by Dogpile; the fact that Ask is higher than Yahoo
and Live may be because Ask is itself closer to Google. The Sensis search engine is quite
unlike all the others, as to a lesser extent is A9. Table IV shows the RBO between the
global and Australian-localized search results for the search engines that provide localized
variants. Apparently, Google performs much lighter localization than either Yahoo or Live.

Other values than0.9 could reasonably be chosen for thep parameter in search engine
comparisons. The researcher might wish to concentrate moreheavily on the user experi-
ence of the first few results, in which casep values of0.8 or even0.5 might be appropriate,

yahoo live ask dogpile sensis alexa a9
google 0.20 0.25 0.35 0.38 0.03 0.23 0.11
yahoo 0.21 0.17 0.24 0.03 0.21 0.08

live 0.18 0.24 0.03 0.76 0.10
ask 0.27 0.04 0.17 0.09

dogpile 0.03 0.23 0.08
sensis 0.03 0.02
alexa 0.09

Table III. Mean RBO,p = 0.9, between non-localized search engines across 113 user queries issued on 2008-
12-05.
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Fig. 8. Mean RBO,p = 0.9, across113 queries between Sensis and Google, and between Alexa and Live,
calculated daily over the experimental period.

leading to expected comparison depths of5 and2, respectively. Conversely, a deeper,
more system-centric comparison might be preferred, suggesting p values of0.95 or 0.97
(expected depths of20 and33.3). Or the researcher might be interested to contrast a range
of comparison depths. Because RBO’s top-weightedness is tuneable via thep parameter,
such investigations are possible. A question that can be addressed in this way is whether
search engines are more similar to each other at the top of their rankings than further down.
Raising thep value deepens the comparison, allowing us to explore this hypothesis. Fig-
ure 7 shows that Yahoo and Live are indeed more similar to Google at higher ranks than
lower, but only mildly so. The difference is much stronger for Ask, suggesting that it is (by
design or coincidence) strongly tuned towards delivering asimilar first-page experience
to Google. The rise, with increasing depth, of Dogpile’s similarity to Google in Figure 7
might on a naive reading lead to the (surprising) interpretation that Dogpile draws more
results from Google further down the ranking than higher up.But this interpretation fails
to appreciate that aggregated results are supplementary, one engine drawing in another’s
answers; Dogpile’s similarity to Live and Yahoo (not shown)rises even more strongly with
depth. The function of RBO here is to alert us to an anomaly: Google’s relationship to
Dogpile is quite different from its relationship to the other engines.

During the period of the study, Sensis ceased being an independent search engine, and
switched to deriving its results from Google. Similarly, Alexa changed to deriving its
results from Live. These events can be traced by looking at the mean RBO scores of the

google yahoo live
RBO 0.77 0.35 0.44

Table IV. Mean RBO,p = 0.9, between localized and non-localized search engines across 113 queries issued on
2008-12-05.
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Day-to-day Start-to-end
mean sd median mean

google 0.91 0.08 0.94 0.50
yahoo 0.94 0.09 0.98 0.45

live 0.94 0.12 1.00 0.43
ask 0.94 0.13 1.00 0.41

Table V. Rate of change of search engine results over time, asmeasured by RBO between sequential daily runs
(left) and between start and end of experiment (right).

respective system pairs over time, as displayed in Figure 8.Evidently, Sensis switched
to using Google on Day 57 (December 15th, 2008), while Alexa moved to using Live
on Day 47 (December 5th, 2008), initially with some modifications, and almost verbatim
from Day 62 (December 20th). The dip in similarity between Alexa and Live on Day
122 (February 18th, 2009) is due to Alexa giving idiosyncratic results on this day; why it
does so is not clear. (Due to a problem with the query processor, complete results are not
available for Sensis prior to Day 47.) Kendall’s distance and average overlap detect similar
overall trends to those shown in Figure 8, but show relatively greater similarity between
Sensis and Google after the switch. We hypothesize that Sensis may be seeding (possibly
localized) results into the top of the ranking provided by Google. The top-weightedness
of RBO would detect such top-heavy seeding more effectivelythat Kendall’s distance or
average overlap.

Another question of interest is how much the results of different search engines change
over time. This gives a sense of how dynamic a search service is, either by way of crawl-
ing policy, or through changes in its ranking computation. For each of the113 queries,
the RBO between one day’s results and the following day’s results was calculated, for all
129 days in the experimental set. For each search engine, the mean and median across
all day-to-day RBO scores were calculated, as was the mean ofthe standard deviation of
RBO scores for each query over time. The results are shown in Table V. Results tend to be
relatively stable from one day to the next; indeed, for Live and Ask, the “typical” (median)
result does not change at all. The results from Google show the highest rate of change.
Additionally, changes to Google results, and to a lesser extent those of Yahoo, tend to be
constant and even (median closer to mean, low standard deviation), whereas changes to
Live and Ask results are more sporadic (median further from mean, high standard devia-
tion). Also shown is the mean RBO between result lists taken from towards the beginning
of the experiment (Days 16 through 19) and then towards the end (Days 111 through 114),
16 pairs in total for each query and each system. Query results have shifted significantly
over the three months, but systems are still more similar to the time-shifted versions of
themselves than (referring back to Table III) they are to each other. Interestingly, while
Google shows more day-to-day change, it shows the least amount of long-term change.
This latter result is significant in a two-sample, two-tailed t-test at0.05 level between
Google and each of the other search engines, but differencesbetween the other engines are
not significant.

It is informative to compare the RBO results with those obtained by using Kendall’s
distance at depthk = 100, reported in Table VI. The large degree of disjointness between
results causes Kendall’s distance to return negative values for all except the derivative
Live–Alexa pair. Negative values make little sense in this application: there is no sense
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in which any of these search engines are giving rankings negatively correlated with any
other. Kendall’s distance gives different relative results than RBO in a number of cases.
For instance, RBO reports Dogpile to be closest to Google, but Kendall’s distance places
it closer to Yahoo; this is because on average Dogpile appears to pull more results from
Yahoo than from Google (mean agreement at100 is 0.49 for Yahoo, and0.30 for Google),
but seems to give a higher ranking to the results from Google.Similarly, of the independent
systems, RBO places Ask as being closest to Google, whereas Kendall’s distance places
it as being farthest away; again, in this case, Kendall’s distance is following agreement at
one hundred. Thus, although Kendall’s distance is by designa correlation metric, its lack
of top-weightedness and the highly non-conjoint nature of these indefinite rankings has it
tending towards an unweighted measure of set agreement.

Too much significance should not be attached to these resultsas they stand. A rigorous
examination of search engine similarities would start fromthese high-level RBO figures,
not finish with them. Nevertheless, these comparisons do give a flavour of the analysis
that a suitable rank similarity measure allows us to make upon search engine results, and
indicate that RBO is uniquely suitable for these purposes.

5.2 Experimenting with information retrieval

In this section, we examine the use of RBO in a typical research situation, where an IR
system is being modified, and the researcher wishes to measure how much the modification
is changing the results. The researcher may be using the ranksimilarity measure as a proxy
for a retrieval effectiveness metric. For instance, an efficiency change might have been
made, and the rank similarity comparison is being used as an indicator of the degradation
in effectiveness that the change could have caused, as with our first example below. Using
RBO is attractive in this situation because performing the relevance assessments needed for
effectiveness evaluation is expensive. If an initial examination with RBO determines that
only slight changes have occurred in (top-weighted) ranking order for some or all topics,
then the expense of relevance assessment on those topics canbe avoided. Or the researcher
may simply be measuring ranking fidelity as such, as in our second example.

Query pruning was mentioned in Section 2. It is a technique inwhich the amount of
memory that is used in query processing is limited, and the amount of processing time
reduced, but at a possible cost in retrieval accuracy and effectiveness. Therefore, if the
results of a pruned system differ from those of an unpruned one, this suggests (though
does not by itself prove) a degradation in effectiveness. Figure 9 gives the results of using
RBO and Kendall’s distance in a query pruning experiment. The query-pruned results are
compared to the unpruned results, with evaluation carried out to varying depths. Here

yahoo live ask dogpile sensis alexa a9
google −0.60 −0.56 −0.66 −0.20 −0.93 −0.58 −0.80
yahoo −0.55 −0.75 −0.04 −0.94 −0.56 −0.85

live −0.73 −0.31 −0.93 0.62 −0.81
ask −0.41 −0.91 −0.73 −0.83

dogpile −0.93 −0.35 −0.82
sensis −0.93 −0.95
alexa −0.83

Table VI. Mean Kendall’s distance at depth 100 between non-localized search engines across 113 user queries
issued on 2008-12-05.
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Fig. 9. Similarity of query-pruned and unpruned runs. Kendall’s distance and RBO with differentp parameters
are calculated at increasing depths, averaged across all topics. The upper and lower bounds and extrapolated
values are shown for RBO. The corpus is wt18g, and the queriesare TREC queries551–600, title only. The
retrieval engine is Zettair0.9.3, using the Dirichlet similarity metric. Pruning is as described in Lester et al.
[2005], with a limit of1,000 accumulators, compared to no accumulator limit.

the unpruned results are the objective or “gold-standard” ranking, from which the pruned
results deviate. All extrapolated RBO values and also Kendall’s distance decrease as the
depth of evaluation increases. This is because query pruning tends to have a greater effect
on late-ranking than top-ranking documents. The extrapolated RBO value asymptotes to
its final value relatively quickly, even for the very deepp = 0.998 evaluation. On the other
hand, the Kendall’s distance score is still falling at depth1,000, and it is not clear what
value it is asymptoting to, if any. We see clearly here that Kendall’s distance is a measure,
not on the full list, but on the prefix. In contrast, base plus residual RBO is a measure on
the full list, and even the extrapolated value shows greaterstability. It should be noted that
all thep values chosen here are quite high. If one were using RBO as a proxy for a retrieval
effectiveness metric,p = 0.98 would be at the upper end of the values one would be likely
to choose, in which case the value has already converged by depth200.

Figure 10 shows a different kind of alteration to an information retrieval system. In
this case, a language model smoothed with Dirichlet priors is being used to score the
similarity between query and documents. This query–document similarity measure takes
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Fig. 10. Similarity of runs with different similarity metric tuning parameters. Kendall’s distance and RBO with
differentp parameters are calculated at increasing depths, averaged across all topics. The upper and lower bounds
and extrapolated values are shown for RBO. The corpus is wt18g, and the queries are TREC queries551–600,
title only. The retrieval engine is Zettair0.9.3, using the Dirichlet similarity metric. Theµ parameter of the
Dirichlet metric was set to500 for one run, and5,000 for the other.

a parameterµ, which balances the influence of the relative weighting of terms within a
document: with lowerµ values, relative weighting is emphasized, meaning some terms
have significantly higher impact than others, whereas with higher µ values, each term
tends to have similar weighting and what matters is simply the presence or absence of the
term [Zhai and Lafferty 2004]. Two different values ofµ are being tried in Figure 10 as
part of a parameter tuning experiment, with the mean RBO across a set of topics being
displayed. Here, neither parameter value is the baseline orobjective value, from which the
other parameter is deviating and presumably degrading. Rather, the interest is in seeing
how much of a difference is caused by altering the parameter.In contrast to Figure 9, the
RBOEXT and Kendall’s distance scores trend up as depth of evaluation increases, not down.
The reason is that parameter tuning tends to cause localizedperturbations in ordering; as
the depth increases, the degree of overlap increases too. All point measures give rising
similarity values with depth, but Kendall’s distance risesconsiderably more than even the
highest-p RBO, and it appears not to have asymptoted by depth1,000, even though the
extrapolated RBO values stabilize well before that. Even though Kendall’s distance is
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derived from a metric that is based upon counting perturbations, it seems to be even more
strongly affected by overlap than RBO itself is.

Of course, the preceding two cases are only examples. Different ranking perturbations
will result in different effects on rank similarity measures. Nevertheless, these examples
serve to illustrate two important points. The first is that the values of non-convergent
measures evaluated to shallow depths can be very different from those at deeper depths,
and so such measures cannot be regarded as adequate similarity measures on indefinite
rankings. In contrast, a convergent metric gives hard bounds on infinite evaluation. The
second, related point is that Kendall’s distance and other top-k metrics cannot be regarded
as single measures, but rather as families of measures, witheachk value instantiating a
different member of the family. That is, Kendall’s distanceis at least as dependent on its
cutoff depthk as RBO is on its parameterp.

5.3 Correlation with effectiveness measures

We conclude by examining the relationship between rank similarity measures and changes
in retrieval effectiveness. The metric used to calculate retrieval effectiveness is average
precision (AP), which is defined as follows. Let the precision of a ranking to depthk be
the proportion of documents to depthk that are relevant. The sum of precisions for that
ranking is the sum of the precision at each ranking that a relevant document is returned.
Average precision for the ranking is then the sum of precisions divided by the total num-
ber of (known) relevant documents for that query. To calculate the correlation between
effectiveness and rank similarity measures, one could takeactual retrieval runs, perturb
their rankings, and calculate the similarity between the original and perturbed rankings
on the one hand, and the change in effectiveness on the other.Actual rankings, however,
are typically far from ideal ones, so randomly perturbing them, while decreasing the rank-
ing similarity, has a rather noisy influence on effectiveness. Instead, we take a simulated
approach. An ideal ranking of10 relevant and90 irrelevant documents is progressively
degraded. The degradation consists of a sequence of25 swaps between a relevant and a
non-relevant document, chosen at random. After each such swap, the AP of the degraded
ranking, and similarity of the degraded to the ideal ranking, is calculated and plotted. For
calculating AP, the total number of relevant documents is set to 10 (that is, the retrieval
system has retrieved all relevant documents).

The results of this simulated experiment are given in Figure11. A total of100 degra-
dations were performed; each of the above figures therefore consists of2,500 points. The
Kendall’s τ between the AP score and the similarity value of the data points is also dis-
played. Kendall’s distance shows a weaker correlation withAP than either of the top-
weighted metrics. Moreover, it is more sensitive to the cutoff point. Cutoff at10 gives the
best correlation with AP across the whole sequence, but poorcorrelation at the top, and
insensitivity to relationships beyond depth10. Evaluation to depth100 shows quite poor
correlation. Average overlap shares some of this sensitivity to evaluation depth, whereas
RBO has high fidelity at high similarity, regardless of thep value chosen. A comparison
between the average overlap and RBO figures illustrates how intimately average overlap
is linked with the choice of cutoff depth. Cutoff depth has atleast as strong an effect on
average overlap as changes in thep parameter has on RBO, even though as argued before
cutoff depth is essentially arbitrary in an indefinite ranking.
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Fig. 11. Correlation between the average precision (AP) of adegraded ranking on the one hand, and rank similar-
ity between the degraded and the ideal ranking on the other, for the experiment in which we start with a ranking
of 10 relevant followed by90 non-relevant documents, then randomly swap relevant and non-relevant elements
25 times, recording similarity and AP at each iteration, with100 independent repetitions. The similarity metrics
used are Kendall’s distance (KD) at different depths; rank-biased overlap (RBO) with differentp values; and
average overlap (AO) at different depths.

6. CONCLUSIONS

Non-conjoint, top-weighted, and incomplete ranked lists –what we have calledindefinite
rankings – are ubiquitous. Appropriate measures of their similarity, however, are lacking.
Such a measure must take into account all the peculiar characteristics of indefinite rankings.
It must be top-weighted, giving more emphasis to the degree of similarity at the top of
the ranking than further down. It must handle non-conjointness in the rankings, neither
requiring every item to appear in both rankings, nor making arbitrary assumptions about
where items uniquely seen in one ranking are located beyond the prefix in the other. And
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finally, it must recognize that the observed rankings are incomplete prefixes of much longer
full rankings, and that the cutoff depth of the prefix is essentially arbitrary. A corollary of
this incompleteness is that what is desired is a measure of the similarity of the full rankings,
not merely of the observed prefixes. No existing similarity measure on ranked lists meets
all of the above requirements.

In this paper, we have introduced a new similarity measure onranked lists, namely
rank-biased overlap, or RBO. It is tuneably top-weighted, handles non-conjointness in the
rankings, and is not tied to a particular prefix length. Most importantly, it is a similarity
measure on the full rankings, even when only a prefix of each isavailable for comparison.
It achieves this by using a convergent set of weights across successive prefixes, preventing
the weight of the unseen tail from dominating that of the observed head. As a result, partial
evaluation allows us to set strict upper and lower bounds on the similarity of the full rank-
ings – a similarity whose exact value could only be calculated by evaluating the rankings
in full. The RBO measure is parameterized to tune the degree of top-weightedness, and we
have provided guidelines on the parameter choice. An extrapolated RBO value has been
derived to give a reasonable point estimate on this similarity. This extrapolated value is it-
self monotonic on agreement. If the degree of agreement increases with deeper evaluation,
the extrapolated value will go up; if agreement decreases, the extrapolated value will go
down. Naturally, the extrapolated value is itself bounded by the upper and lower bounds
of the RBO range. We have also proved that the distance measure 1 − RBO is a metric,
and extended RBO in a consistent way to handle tied ranks and prefix rankings of different
lengths. Finally, we have illustrated the use of RBO in comparing public search engines
and in the IR researcher’s laboratory, demonstrating that it gives stabler and more intuitive
results than alternative measures.

Rank-biased overlap can properly be considered as a branch of a family of measures on
indefinite rankings, which are overlap-based measures using a convergent set of weights
over prefixes. We have argued that an overlap-based measure makes more sense for in-
definite rankings than do measures derived from the notion ofcorrelation. Indeed, our
illustrative examples suggest that, in the presence of highand variable degrees of non-
conjointness, correlation-based metrics tend in practiceto degenerate into unweighted
measures of set overlap.

While we have developed and deployed RBO in the IR field, it is applicable to any
environment in which indefinite rankings occur – and these environments are numerous.
Correct measurement is fundamental to informative observation and experimental manip-
ulation, and when dealing with the volume of data produced bythe modern information
economy, measures that inform rather than confound are essential. We hope that rank-
biased overlap will prove to be such a measure, for an important domain in which such
measures have, until now, been lacking.
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A. TAIL DOMINATES PREFIX IN AO

In this Appendix, we prove that the tails of infinite rankingsdominates the heads in the
calculation of AO.

Consider the weight given to each rank by the AO measure on lists of depthn. Rank1
is contained in each of then subsets. In the first subset, it determines the entire overlap; in
the second subset, it determines half the overlap; in the third, a third of the overlap; and so
forth. Therefore the weight of rank1 is:

WAO(1, n) =
1

n

(

1 +
1

2
+

1

3
+ . . . +

1

n − 1
+

1

n

)

=
1

n

n
∑

d=1

1

d
=

Hn

n
(33)

whereHn ≈ γ + lnn + 1/(2n) is thenth Harmonic number, andγ = 0.52771 . . . is the
Euler-Mascheroni constant (see Knuth [1997, Section 1.2.7]). It follows thatWAO(2, n) =
(Hn − H1)/n, thatWAO(3, n) = (Hn − H2)/n, and in general:

WAO(i, n) =
Hn − H(i−1)

n
. (34)

If only the prefixk < n elements are available for each list, then the{1, . . . , k} heads of
each list have contributed to the similarity measure, but the {k + 1, . . . , n} tails have not.
The cumulative weight of the head is:
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where the simplification at Equation 36 uses Stirling’s approximation,lnx! ≈ x ln x − x.
Equation 37 goes to0 asn → ∞ andk is fixed.

The cumulative weight of the tail, following a similar line of simplification, is:

W tail
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which goes to1 asn → ∞ andk is fixed. Therefore, for an infinite list, the weight of the
tail is 1, and of the head is0, proving that the tail dominates the head.
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