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ABSTRACT
Information retrieval systems are evaluated against test collections
of topics, documents, and assessments of which documents are rel-
evant to which topics. Documents are chosen for relevance assess-
ment by pooling runs from a set of existing systems. New sys-
tems can return unassessed documents, leading to an evaluation
bias against them. In this paper, we propose to estimate the de-
gree of bias against an unpooled system, and to adjust the system’s
score accordingly. Bias estimation can be done via leave-one-out
experiments on the existing, pooled systems, but this requires the
problematic assumption that the new system is similar to the ex-
isting ones. Instead, we propose that all systems, new and pooled,
be fully assessed against a common set of topics, and the bias ob-
served against the new system on the common topics be used to
adjust scores on the existing topics. We demonstrate using resam-
pling experiments on TREC test sets that our method leads to a
marked reduction in error, even with only a relatively small num-
ber of common topics, and that the error decreases as the number
of topics increases.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and software –
performance evaluation.

Keywords
Retrieval experiment, evaluation, system measurement

General Terms
Measurement, performance, experimentation

1. INTRODUCTION
Information Retrieval (IR) systems are evaluated using test col-

lections, which contain a document corpus, a set of topics to run
against that corpus, and judgments (called qrels) as to which docu-
ments are relevant to which topics. A system returns a ranked list
of documents or run for each query. The documents are marked
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for relevance using the qrels, and an evaluation metric is applied
to the resulting vector of relevancies to calculate an effectiveness
score for the run. The mean of the per-topic scores becomes the
effectiveness score for the system against the test collection.

Relevance judgments are performed by human assessors, and are
expensive to collect. It is not in general practical to assess every
document in the corpus for relevance to every topic. Instead, the
top documents from the runs of the systems participating in the test
collection’s original experiment arepooled, and only these docu-
ments are assessed. The assumption behind pooling is that, if a
diverse enough range of good systems contribute to the pool, and
if the systems are pooled to a sufficient depth, then the pool should
contain “almost all” the documents in the corpus relevant to each
topic. If a new, unpooled system is run against the test collection,
and it returns unpooled, unassessed documents, these documents
can reasonably beassumed irrelevant. As a result, despite its in-
completeness, the test collection is acceptably robust to reuse.

As document corpuses have grown in size, however, the assump-
tion that pooling will retrieve nearly all relevant documents has be-
come increasingly suspect. Unassessed documents returned by new
systems may therefore in fact be relevant, and assuming them to be
irrelevant will lead to an evaluation bias against new systems. In ad-
dition, the bias can be systematic against systems that are different
in nature from those which contributed to the pool. For instance,
Buckley et al. [2007] suggest that recent large TREC collections
have their pools flooded with documents rich in query keywords,
and are biased against retrieval methods that attempt to go beyond
keyword matching. Such systematic bias is not merely unfair to
certain systems, but is an obstacle to an entire direction of potential
retrieval improvement.

The pooling approach requires deep assessments of the pooled
runs, in order to provide good coverage of the set of relevant doc-
uments and make the collection reusable. Users, though, rarely
look beyond the first page of results [Joachims et al., 2005], so
deeper assessment is not necessary to capture the typical user ex-
perience. Assessing a large number of queries to a shallow depth
gives greater experimental power than assessing a small number
of queries deeply [Webber et al., 2008]. One would rather assess
1,000 queries to depth10 than100 queries to depth100. Anecdotal
evidence suggests that shallow, broad assessment is indeed the ap-
proach taken by large search engines; see, for instance, the data set
described in Najork and Craswell [2008]. Methods that allow for
the reliable reuse of such shallowly-assessed topics are attractive.

Rather than assuming unassessed documents to be irrelevant,
which is biased against new systems, unassessed documents can
instead be ignored. This can be done either by using a special-
purpose metric such as BPref [Buckley and Voorhees, 2004], or
else by excising the unassessed documents from the run, shifting



the remaining (assessed) documents up, and then evaluating the
resultingcondensed list with a standard evaluation metric [Sakai,
2007]. However, the fact that a document has not been returned
by other systems is evidence for its not being relevant. Therefore,
excising it from the run, and promoting in its place a document that
has been returned by other runs and so is more likely to be relevant,
leads to a bias in favor of unpooled systems [Sakai, 2008].

Assuming unassessed documents to be irrelevant, then, is biased
against new systems, while condensing runs by excising unassessed
documents is biased in favor of new systems. Nor is the degree
of bias fixed. Rather, it depends on the comprehensiveness of the
pool, and therefore on the number, quality, and variety of the pooled
systems. Where a small number of similar systems are shallowly
pooled, the bias of assumed irrelevance is strong, while that of con-
densed lists is relatively weak. As the comprehensiveness of the
pool increases, the bias of assumed irrelevance decreases, and the
bias of condensed lists increases. Therefore, neither assumed ir-
relevance nor condensed lists are appropriate and bias-free in all
circumstances, nor will a static adjustment method work.

1.1 Our contribution
In this paper, we propose to address the problem of bias against

unpooled systems by estimating that bias, and adjusting the un-
pooled score accordingly. The estimation is made empirically, from
the systems under evaluation, and rests only on sampling theory; it
requires no prior information or model fitting. The bias estimate
becomes an adjustment factor, and this factor is added to the score
of the unpooled system, to derive the adjusted score.

The first method of adjustment we examine does not require the
new system to be fully assessed for any topics. Instead, the bias
estimate is derived from the existing, fully-pooled systems, using a
leave-one-out experiment. This method is straightforward and can
be applied with entirely static collections such as those produced
by the TREC effort. However, the resampling technique applied
assumes that the existing, fully-pooled systems and the new, un-
pooled system have been randomly sampled from a common sys-
tem population. If the new system is significantly better, or just
significantly different, then the random sampling assumption is in-
valid, and the adjustment method is unreliable and likely to under-
state the system’s effectiveness.

A more robust method of bias estimation and adjustment can be
applied if full assessment of the new system, along with the exist-
ing ones, is available on a set of common topics. The error on the
unpooled score of the new system can be directly observed on the
common topics, and used as an estimate of unpooled bias for that
system. The estimate is applied as an adjustment to the unpooled
scores achieved by the new system on existing topics. The resulting
adjusted scores are unbiased, and have markedly less mean error
than the unadjusted ones. Lower mean error is achieved with only
a few common topics, and the error decreases as the number of
common topics increases. Estimating bias based on a set of fully-
assessed topics is preferable in its assumptions to the leave-one-out
estimation upon the fully-pooled systems because the inference is
being made not from systems to systems, but from topics to topics.
Therefore, the underlying assumption is not the dubious one that
the systems have been randomly sampled, but the more reasonable
one that the topics have. Using our method, the system evaluator
can leverage a small number of common topics to reuse the assess-
ment effort already spent on a large number of existing topics.

1.2 Related work
Buckley and Voorhees [2004] propose BPref as a special-purpose

metric for handling incomplete relevance information. Yilmaz and

Aslam [2006] calculate AP directly on lists from which unjudged
documents have been excised, a method which they refer to as In-
duced AP. Sakai [2007] suggests applying general-purpose metrics
to runs with unjudged documents excised, and introduces the ex-
pressioncondensed lists to describe such runs. Sakai also demon-
strates that BPref is in fact a restricted form of AP on condensed
lists, where evaluation is cut off once a certain number of non-
relevant documents are seen in a run. All of these three papers
perform experiments in which incomplete relevance information
is formed by randomly sampling documents from the full qrels
set. This construction method is inherently unbiased and therefore
highly artificial; it does not simulate the effect of shallow pooling
or of comparing unpooled against pooled systems. Sakai [2008] in-
stead creates incomplete relevance information by partial pooling,
and demonstrates that in this circumstance, condensed lists lead to
bias in favor of new systems.

Unassessed documents pose such a thorny problem in part be-
cause most existing evaluation metrics do not directly express the
degree of uncertainty that arises from the presence of unassessed
documents in a run. For many metrics, indeed, the uncertainty is
difficult to quantify, particularly where the metric in normalized
by the number of relevant documents. Moffat and Zobel [2008]
propose a new metric, Rank-Biased Precision (RBP), which is un-
normalized but naturally convergent, with the contribution of each
rank having a fixed weight. A run’s RBP score is expressed not
as a single value, but as a base value and residual. The residual
exactly quantifies the uncertainty that results from incomplete as-
sessment. If two systems have overlapping residuals, then it cannot
be concluded for certain that one is superior to the other.

Yilmaz and Aslam [2006] propose that documents for assess-
ment be chosen by uniform random sampling from the pool. The
sampled documents are then used to estimate the true score. The
estimator is unbiased, but has relatively high variance. They apply
this sampling method to AP, referring to the resulting metric as In-
ferred AP. Aslam et al. [2006] instead use a lower variance unequal
sampling scheme, in which a document is sampled with probabil-
ity proportional to its weight under the evaluation metric employed.
These sampling methods cannot be applied in environments where
incomplete assessments have been chosen by non-random means,
such as pooling of a subset of systems. Aslam and Pavlu [2008]
combine the pooling and random sampling using stratified sam-
pling. Stratified sampling is applied by Yilmaz et al. [2008] to
an environment which mixes pooling and random sampling. Their
finding that the method is not subject to pooling bias is not con-
firmed in application [Carterette et al., 2008], possibly because ag-
gregating probability of inclusion across multiple runs by taking
the mean of the per-run probabilities may not properly account for
reinforcement by like systems.

Instead of pooling on the one hand, or random sampling on the
other, a number of authors have proposed that documents for as-
sessment should be chosen in an attempt to maximize some eval-
uation goal; for instance, to boost the proportion of relevant docu-
ments [Cormack et al., 1998], or to focus on the score accuracy of
the best-performing systems [Moffat et al., 2007]. Carterette et al.
[2006] select documents so as to maximize confidence that one sys-
tem does or does not have a positive score delta with another, using
a simple fixed probability of relevance model. A more complex
model is developed in Carterette [2007]. Each system is treated as
an expert, and in returning or failing to return a document, a sys-
tem is asserting its judgment as to the probability that a document
is relevant. The higher the document is returned in a ranking, the
stronger the assertion of its probability of relevance. Then, as docu-
ments are incrementally assessed, the reliability of each system can



be progressively calibrated. Multiple logistic regressions are used
to aggregate the evidence and formulate a probability of relevance.
These probabilities of relevance can be used to directly estimate a
score for a system. When employed in practice, estimated scores
were consistently a third of actual scores [Carterette et al., 2008];
this suggests that a strong bias would occur if the method were
used to compare pooled and unpooled systems, particularly if the
number of pooled systems was small.

2. UNPOOLED BIAS
Our approach is to estimate the degree of bias that a system suf-

fers from not being pooled based on a leave-one-out experiment.
Estimation can be undertaken solely on the existing, pooled sys-
tems, and then the result applied to the new, unpooled system;
however, inference from systems to systems is problematic, as we
demonstrate. Preferably, if a common set of topics for which the
new system is also fully assessed is available or can be created, the
bias against the new system can be directly measured on that subset.
The resulting bias estimate is then applied as a score adjustment to
the unpooled score. The unpooled score can be calculated either by
assuming that all unassessed documents are irrelevant, or else by
excising unpooled documents and evaluating the condensed lists.

This section begins by introducing the materials and methods
employed. The degree of bias that unpooled systems suffer under
assumed irrelevance, and enjoy under condensed lists, is then illus-
trated on test set data.

2.1 Materials
Two test sets from the TREC effort are used in this paper. The

first is from the 2004 Robust Track [Voorhees, 2004]. It consists
of 110 systems submitted by14 groups, run against249 topics.
The large number of topics makes this data set particularly attrac-
tive for use in meta-evaluation studies such as this. Of the topics,
200 were drawn from earlier tracks of TREC, and the relevance as-
sessments from these tracks reused, without new assessments being
performed, meaning that not all documents returned by 2004 Ro-
bust Track systems have assessments. Additionally, only a subset
(albeit a plurality) of systems were pooled for the49 new topics.
To avoid confusion between documents unassessed in the origi-
nal collection, and documents unassessed because of experimental
withdrawal from the pool, the former are eliminated by expanding
the original qrel set with non-relevant judgments for all unassessed
documents. This affects only 3% of total returned documents for
the old topics, and 1.5% for the new.

The second data set used is from the AdHoc track of TREC-8
[Voorhees and Harman, 1999], consisting of129 systems submit-
ted by40 groups, run against50 topics. The additional value con-
tributed by this data set is the manual runs it contains. Manual runs
allow for human involvement in query formulation and reformula-
tion. They typically outperform automatic runs, and in particular
find a much higher proportion of unique relevant documents. In
TREC-8, the13 manual runs find24% of the relevant documents,
while the116 automatic runs between them only find17% (the re-
mainder are returned by both categories of runs). Similarly, the best
11 manual systems are also the best11 systems over all, at least un-
der some metrics. The Robust test set contains no manual runs. It
will be observed later in this paper that methods of score estimation
that appear to perform well on homogeneous system sets often per-
form poorly on the more interesting case of heterogeneous sets. We
test this by attempting to use information from automatic systems
to estimate scores on manual ones.

An evaluation metric is a function that takes a vector of relevan-
cies and produces a real-valued score that summarizes the vector,

rewarding the return of relevant documents, and generally giving
higher weight to higher rankings. Topics have differing degrees
of difficulty. Many metrics attempt to compensate for this by nor-
malizing scores based on the number of relevant documents for a
topic. Also, metrics can be evaluated to a greater depth than runs
are pooled, with assessments for documents beyond pool depth in
one ranking being available if those documents were returned be-
fore pool depth in another ranking. Both normalization and evalu-
ation beyond pooling depth add to the complexity of score estima-
tion, since finding relevant documents in one run affects the scores
of other runs.

The metric employed in this paper isrank-biased precision at
ten (RBP@10). Rank-biased precision assigns geometrically de-
caying weights to each rank, with the score being the inner product
of the relevance and weight vectors. Since the geometric sequence
is convergent, RBP scores fit within the range of[0, 1). Also, be-
cause each rank has a fixed weight (due in part to the exclusion of
a normalization step), the degree of uncertainty arising from par-
tial unassessment (either because evaluation stops at a certain rank,
or because the relevance of some documents up to that rank is un-
known) can be precisely stated as a residual value. For this paper,
we take the base RBP value as our point score. Additionally, we
cut off evaluation at depth 10, and adjust the rank weights accord-
ingly, assigning no weights (or residual) to ranks 11 and beyond.
The precision-at-ten metric was also employed in experiments, but
since the outcomes obtained are very similar to RBP@10, the re-
sults are not separately reported here.

As mentioned in the introduction, unassessed documents can be
handled either by assuming them irrelevant or by condensing the
lists. We implement condensing of lists by shuffling in documents
from beyond evaluation (hence pooling) depth. If there are insuffi-
cient assessed documents in the ranking, the trailing positions are
filled with placeholder irrelevant documents.

2.2 Bias of exclusion from the pool
In this section, we observe the empirical bias of excluding sys-

tems from the pool. This can be derived from a leave-one-out ex-
periment. We sample a set of fully-pooled systems from the test
set, and randomly select one systems from the sampled set. The
score ofs under full assessment is calculated. Then, we form a
pool consisting of the sampled systems, but excludings, which is
equivalent to marking all documents uniquely returned bys to pool
depth as unassessed. The partial score ofs is calculated, using ei-
ther presumed irrelevance or list condensing. The bias is then the
difference between the partial and true score. This is calculated for
systems on every topic. The random sampling of system sets and
unpooled system is repeated multiple times, to give a distribution
of biases. The whole experiment is performed for different sizes of
the fully-pooled set, allowing us to empirically relate bias to pooled
system set size. Note that this is an observational study based on
sub-sampling. The full set of systems being sub-sampled from is
not itself randomly sampled from the universal population of sys-
tems, so we cannot infer that the observed mean biases and bias
distributions hold for all systems. This investigation supplements
that undertaken in Sakai [2008]; however, our focus is on a much
smaller number of pooled systems than are investigated there.

Figure 1 graphs the mean and quartile biases for rank-biased
precision; the figure for precision at ten (not shown) is very sim-
ilar. Using condensed lists is biased in favor of the unpooled sys-
tem, while assuming unassessed documents to be irrelevant is bi-
ased against it. For assumed irrelevance, the bias steadily decreases
as the number of pooled systems orpool width increases, roughly
halving when the pool width is doubled, as the number of unassessed
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Figure 1: Empirical RBP (p = 0.8) bias for unpooled system
for different numbers of pooled systems. Pooling is to depth 10.
The TREC 2004 Robust Track data set is used. Graphed is the
mean and quartiles of the difference in mean system RBP score
between the true score for the unpooled system and the score
using either condensed lists or assumed irrelevance. Each data
point represents 100 system set subsamplings.

documents (not shown) steadily drops. The behavior of condensed
lists is more complex. Fewer unassessed documents means that the
condensed and true relevance vectors are more similar. At the same
time, more pooled systems omitting a document strengthens the
odds that the document is in fact irrelevant, and therefore strength-
ens the bias resulting from excising it and replacing it with a pooled
document, partially counteracting the effect of better accuracy. As
a result, condensed lists have less bias than assumed irrelevance
for small numbers of pooled systems, but assumed irrelevance has
less bias for larger ones. We also observe that for wide pools, the
distribution is quite skewed (mean is close to third quartile), as the
frequency with which the unpooled system is largely “covered” by
an almost-identical runset from the same family increases.

3. ADJUSTING SCORES FOR BIAS
Two methods of estimating unpooled bias are discussed in this

section. The first,bias inference from systems, requires no fully-
assessed common topics, and instead takes its estimate from a leave-
one-out experiment on the fully-pooled systems. The method is
simple and requires no additional assessment effort. However, in
inferring from systems to systems, it dubiously assumes that the
systems have been randomly sampled from the same population.
The second,bias inference from topics, requires that a subset of
topics be fully assessed for all systems, and directly observes the
bias against the otherwise unpooled system on those topics. While
this requires extra assessment effort, the method makes the more
reasonable assumption that the topics have been randomly sampled
from the same population. A formal analysis of the common-topics
method is provided, and experimental results are given.

3.1 Bias inference from systems
Section 2.2 examined the empirical bias that results from exclud-

ing a system from the pool, both under assumed irrelevance and us-
ing condensed lists, for a particular test set. This observed bias, or
perhaps an average across a few different test sets, could be directly
used as a global score adjustment factor for unpooled systems. The
problem is that we could not be certain that the results for one test
set would be transferable to another. An alternative is to derive the
estimate directly from the experimental set at hand.

Algorithm 1 Adjust scores based on inference from systems
T ← set of topics
S ← set of (pooled) systems
Q← set of qrels onT derived from pool ofS
r ← (unpooled) system
for s ∈ S do

Q′ ← Q\{documents uniquely pooled froms}
Q′ ← Q′ ∪ {documents returned byr}
ps ←mean (pooled) score ofs evaluated againstQ
us ←mean (unpooled) score ofs evaluated againstQ′

βs ← ps − us ⊲ unpooled bias againsts
end for
a←

P

s∈S βs/|S| ⊲ adjustment factor
ur ←mean (unpooled) score ofr evaluated againstQ
return ur + a

Pool
Width

Robust Manual

Raw Adjusted Raw Adjusted

2 0.127 0.041 0.451 0.302
4 0.078 0.028 0.384 0.294
10 0.029 0.015 0.283 0.237
20 0.013 0.008 0.231 0.203
40 0.007 0.006 0.177 0.159

Table 1: Bias inference from systems. Mean absolute er-
ror (MAE) of leave-one-out score adjustment and unadjusted
scores for RBP (p = 0.8) under presumed irrelevance, for dif-
ferent numbers of pooled systems. The left columns are for all
systems from the TREC 2004 Robust Track. The right columns
show estimation of unpooled manual system scores from pooled
automatic systems on the TREC-8 AdHoc Track data set.

Adjustment factors for an unpooled system being compared to
a set of pooled systems can be derived by a leave-one-out experi-
ment. Say that an unpooled systemr is being compared toS, a set
of pooled systems. We remove each of the systems inS from the
pool in turn, and calculate its unpooled score, either by assuming
unassessed documents to be irrelevant or by condensing the run.
The difference between mean unpooled and pooled scores of each
system inS is the observed pooling error for that system. The av-
erage across the observed errors ofS provides an estimate of the
pooling bias for the test set, and therefore of the adjustment factor
a that should be added to the mean score of unpooled systems to
correct for this bias. An important refinement to this method is that
when each systems is withdrawn from the poolS for its unpooled
score to be calculated, the new systemr is added to the pool to re-
place it. This has the effect of retaining any documents common to
s andr but not found inS\s. Otherwise, we would be estimating
the penalty against an unpooled system in ann − 1 pool, and our
adjustment would be biased; specifically, it would tend to overes-
timate the adjustmenta. This leave-one-out adjustment method is
described in Algorithm 1.

The effectiveness of leave-one-out score adjustment can be ex-
perimentally assessed by resampling on an existing test set. For
this purpose, we take the 2004 TREC Robust Track data set. A set
of n + 1 systems are randomly sampled from the full system set,
with uniform probability. One of these systems is selected to act as
the unpooled systemr, and the remainingn to form S, the set of
pooled systems. Judgments from the original qrel set are reused.
The mean score ofr across all249 topics is adjusted based on a



leave-one-out experiment onS. The system sampling is repeated
100 times for each pool size. For this experiment, unassessed doc-
uments are assumed irrelevant. The resulting mean absolute error
(MAE) between the true score on the one hand, and the unpooled
score (raw or adjusted) on the other, is then calculated. Letti be the
true score for topici, letsi be the unpooled score (raw or adjusted),
and letN be the number of topics; then:

MAE =
1

N

N
X

i

|ti − si| .

The MAE figures for the experiment are reported in the left-hand
columns of Table 1. Adjustment leads to much greater accuracy
of scores, particularly with smaller pools. In addition, it is unbi-
ased (as likely to over as to underestimate), whereas the unadjusted
scores are all underestimates, meaning that bias or mean error (not
separately reported in the table) is identical to mean absolute error.

The apparently good results obtained on the 2004 TREC Ro-
bust Track data set are, however, misleading. The uniform ran-
dom sampling employed is artificially beneficial to the adjustment
method being examined. For instance, it is not surprising that the
adjusted scores are unbiased, because for every randomly-selected
set of systems that leads to a high estimate, there will be another
randomly-selected set that leads to a compensating low one. This
would not be a problem if the real-world evaluation environment in
which this technique was used were indeed one in which systems
were being randomly sampled for evaluation, but in general this
will not be the case. Rather, the new system under the evaluation
will be one that the developer has consciously tried to make better
than the existing ones. What can happen when the leave-one-out
score adjustment method is employed in such a situation is illus-
trated by the right-hand columns of Table 1. Here, the TREC8 Ad-
Hoc Track data set is employed. The new, unpooled system whose
score is to be adjusted is randomly selected from the11 best manual
systems, while the pooled systems are sampled from the remainder
of the system set. As described previously, the manual systems are
significantly different from and better than the automatic ones, as
shown by the large number of unique relevant documents they re-
turn. Exclusion from the pool and the use of presumed irrelevance
greatly underestimates the performance of these manual runs, and
while leave-one-out adjustment helps, there is still a strong error,
even with large pool sizes.

3.2 Bias inference from topics
Section 3.1 has examined the derivation of adjustment factors

from a leave-one-out experiment on the fully-pooled systems. The
basic principle was inference from one set of systems to another
system. As was pointed out, the more the inferred-to system differs
from the inferred-from systems, the more tenuous this inference
becomes. And when performing evaluation on a new system, that
system is generally only interesting to the degree that it is different
from, and better than, the existing ones.

A more robust inference can be performed if there exists, or can
be created, a set ofcommon topics for which both the existing sys-
temsS and the new systemr are fully assessed. In this case, the
bias againstr of being omitted from the pool can be directly ob-
served on the common topics, since both true and unpooled scores
are known. Then, this observed bias can be generalized as an ad-
justment factor for that system’s scores on the topics for which it
is genuinely unpooled. The process is described in Algorithm 2.
Inference from common topics to unpooled topics is more robust
than from pooled systems to unpooled systems because we are in-
ferring from one set of topics to another, rather than from systems
to systems, and it is more reasonable to assume that the topics are

Algorithm 2 Adjust scores based on inference from topics
T ← set of topics
S ← set of (pooled) systems
QT ← qrels onT derived from pool ofS
r ← (unpooled) system
C ← set of common topics
QC ← poolS ∪ r onC and assess for relevance
for c ∈ C do

Q′

C ← QC\{documents uniquely pooled fromr}
pr,c ← (pooled) score ofr on c evaluated againstQC

ur,c ← (unpooled) score ofr on c evaluated againstQ′

C

βr,c ← pr,c − ur,c ⊲ unpooled bias againstr on c
end for
a←

P

c∈C βr,c/|C| ⊲ adjustment factor
ur ←mean (unpooled) score ofr evaluated againstQT

return ur + a

randomly sampled from the same population than that systems are;
indeed, in some experimental settings, random sampling of topics
can be directly enforced.

We begin by offering a formal analysis of the common-topics ad-
justment method as a form of sample-based ratio estimation. Then
an experimental assessment is performed, which validates the for-
mal analysis and demonstrates that common-topics adjustment leads
to greatly improved accuracy over unadjusted scores, even if the
new system is quite different from the existing ones.

Analysis
The proposed method is a form ofratio estimator [Thompson, 2002,
Chapter 7]. Ratio estimators are of use where a cheap but inaccu-
rate measurex is available for every element of a population, while
the more costly true valuey is only known for a sample. The mean
ratio r betweenx andy is estimated from the sample, and applied
to thex values across the population to estimate the true mean value
of y; that is,µ̂y = rµx. For us, the desired value is the mean of the
true scoresµt (or simplyµ), and the cheap approximations are the
unpooled scoresu. We use arithmetic difference rather than ratio
for the adjustment, since it can readily happen that the unpooled
scoreui for a topici is 0 when the true scoreti is greater than0, in
which case the ratioti/ui is undefined. LetN be the total number
of topics, unpooled and common, andn be the number of common
topics, that is, the topics for which all systems are fully assessed.
Analytically, we will be treating then common topics as randomly
sampled from the full set ofN topics. So the estimated adjustment
a, derived from then common topics, is:

a =
1

n

n
X

i=1

(ti − ui) . (1)

The estimate of the true mean scoreµ, using theadjusted estimator,
for all N topics based on the unpooled scoresui is:

µ̂a =
1

N

N
X

i=1

(ui + a) , (2)

where the quantity defined on the left of the equation should be
understood as “thea-based estimator of true meanµ”, not “the
estimator of the mean ofa”. Of course, forn of theseN topics we
know the true score; however, since by derivation the adjustmenta
will be exactly correct for the mean of thesen unpooled scores, we
do not need to separately account for thesen topics in the estimator.
The adjustmenta is an estimate of the true adjustmentA that should
be applied to the unpooled scores of allN topics in order to get the



true mean score. Asa is derived by samplingn deltas from the
full N deltas whose mean isA, it follows that a is an unbiased
estimator ofA, and therefore that̂µa is an unbiased estimator ofµ,
the true mean score. The variance of this estimator is:

var(µ̂a) =
N − n

N
·
σ2

a

n
. (3)

The left-hand fraction here and subsequently adjusts for the small
population; that is, for the fact that the exact values are known for
n of the N elements in the population, and estimation is only be
applied for the remainingN − n. The numerator of the right-hand
fraction is:

σ2

a =
1

N − 1

N
X

i=1

(ti − (ui + a))2 (4)

namely, the mean squared error of the per-topic adjusted scores
against the true scores across allN topics (loosely speaking, the
variance of the adjusted scores).

Instead of the adjusted estimatorµ̂a, we could take the mean
true scorēt from then topics for which full assessment has been
performed. This is also an unbiased estimator ofµ, the true mean
score. The variance of thissampled estimator µ̂n is given by ele-
mentary sampling theory, and is:

var(µ̂n) =
N − n

N
·
σ2

t

n
, (5)

whereσ2

t is the variance of the true scores across allN topics.
Comparing Equations 3 and 5 shows that adjusted estimator is more
accurate than the sampled estimator whenσ2

a, the MSE of the ad-
justed scores, is less thanσ2

t , the variance of the true scores. And
this is something which, due to the high inter-query variance of
most metrics, is quite generally the case. That is, adjusted scores
are in general closer to true scores than true scores are to their mean.
Indeed, of the500 different randomly-sampled system sets used in
the experimental section that follows, in not one is the variance
of true scores less than the MSE of adjusted scores, either with
unassessed documents assumed irrelevant or condensed lists em-
ployed.

The unadjusted scores could be used instead of the adjusted ones
as a (generally biased)unadjusted estimator. The error on the unad-
justed scores isA, of whicha is an estimator. The error on the ad-
justed scores isA−a; that is, it is dependent on the degree to which
a’s estimation ofA is incorrect. Therefore, the adjusted scores will
be more accurate than the unadjusted scores if0 < (a/A) < 2;
that is, if the following two conditions are met:

1. the estimated adjustmenta is the same sign as the true ad-
justmentA

2. the estimated adjustmenta is no more than twice the true
adjustmentA

Where the unadjusted scores always misestimate the true scores
in the same direction (always underestimate them, or always over-
estimate them), as occurs when unassessed documents are assumed
irrelevant, Condition 1 is met. And since the expected value ofa
is A, Condition 2 will be met the vast majority of the time (exactly
how often depends on the distribution ofa).

However, where the unadjusted scores can underestimate the true
scores for some topics, and overestimate them for others, Condi-
tion 1 is not guaranteed. Additionally, althougha = A in expec-
tation, its distribution may spread beyond0 at one end, potentially
violating Condition 1, and above2A at the other, potentially violat-
ing Condition 2. The cumulative density beyond these limits gives

Algorithm 3 Sample systems, topics to assess adjustment accuracy
T ← 249 TREC Robust 2004 topics
X ← 110 TREC Robust 2004 systems
I ← 100 ⊲ number of system sampling repeats
J ← 200 ⊲ number of topic sampling repeats
for w ∈ {2, 4, 10, 20, 40} do ⊲ pool widths

for i ∈ 1→ I do
S ← sample(X, w)
r ← sample(X\S, 1)
Q← poolS ∪ r onT
Q′ ← poolS onT
tr ←mean (true) score ofr evaluated againstQ
ur ←mean (unpooled) score ofr evaluated againstQ′

for n ∈ {10, 20, 40, 100} do
for j ∈ 1→ J do

C ← sample(T, n) ⊲ common topics
a← estimate adjust. onC as in Algorithm 2
er ← tr − (ur + a) ⊲ adjustment error
Ew,n ← Ew,n + |er|

end for
end for

end for
end for
E ← E/(I ∗ J) ⊲ Take mean error overI ∗ J repeats
return E

the probability that the adjusted scores are less accurate than the
unadjusted ones, and this probability depends on the distribution
of a. If we assumea to be normally distributed under the central
limit theorem (CLT), then to have 68% confidence that the adjusted
scores are more accurate than the unadjusted ones requires that the
standard deviation of the adjustment estimator be less than the true
adjustment. That is,

σµ̂a
= σa ·

r

(N − n)

N · n
< |A| , (6)

which is derived by taking the square root of Equation 3. For differ-
ent degrees of confidence, different percentiles of the normal cumu-
lative distribution function should be checked. For smalln, where
the assumption of normality is dubious, a bootstrap can be used
instead.

Of course, in most evaluation settings, the true values ofA and
σ2

a are unknown, so Equation 6 cannot be directly calculated. The
value ofσ2

a can be estimated as:

s2

a =
1

n− 1

n
X

i=1

(ti − (ui + a))2 (7)

that is, the observed MSE on the sampled topics. This would enable
us to assess whether using the adjusted scores across allN topics
rather than just the true scores on then topics was likely to improve
accuracy — which, as noted before, will usually be the case. As for
the adjustmentA, the estimator for it isa itself.

Experiments
The purpose of this section is to empirically assess the improve-
ment in accuracy that score adjustment, based on bias inference
from topics, provides over using the unadjusted, unpooled scores.
Necessarily, the precise results achieved apply only to the particular
test sets examined, but they are in accordance with the preceding
formal analysis, and are indicative of what might be expected in
general.



Pool
Width

Mixed True and Unadjusted Adjusted

Common Topics Common TopicsUnadj
10 20 40 100 10 20 40 100

2 0.127 0.122 0.117 0.107 0.076 0.044 0.032 0.024 0.019
4 0.078 0.074 0.071 0.065 0.046 0.033 0.024 0.019 0.014
10 0.029 0.028 0.027 0.024 0.017 0.018 0.013 0.010 0.008
20 0.013 0.013 0.012 0.011 0.008 0.010 0.008 0.006 0.005
40 0.007 0.007 0.007 0.006 0.004 0.007 0.005 0.004 0.003

Table 2: Bias estimates from topics. MAE of unadjusted, mixed (N −n unadjusted, n true), and adjusted scores. Metric is RBP@10
(p = 0.8). Columns denote number of common topics used to derive adjustment factors. Rows denote number of systems in the pool.
Values are the MAE of the error between the mean estimated score and the mean true scores, across the non-common topics.

Pool
Width

Mixed Adjusted
Unadj

10 10 20 40 100

2 0.034 0.033 0.041 0.028 0.019 0.010
4 0.035 0.034 0.031 0.022 0.015 0.008
10 0.024 0.023 0.018 0.013 0.009 0.005
20 0.020 0.019 0.013 0.009 0.007 0.003
40 0.012 0.012 0.009 0.007 0.005 0.003

Table 3: MAE of unadjusted, mixed, and adjusted scores, based
on condensed lists. Metric is RBP (p = 0.8). Other details are
as for Table 2.

We begin by exploring the relative accuracy of unadjusted and
adjusted scores, with unassessed documents assumed to be irrele-
vant. The error on adjusted scores is observed using the experiment
described in Algorithm 3. The mean absolute error (MAE) from
the true score is taken as the measure of accuracy of the adjusted
scores, with each MAE entry averaged from20,000 subsamples.
We also record the error on unadjusted scores for each system sam-
ple. In addition, the true scores of the common topics are mixed
with the unadjusted scores of the remaining topics and their error
is calculated. This is necessary for a fair comparison, since in the
adjusted scores the adjustment is precisely correct for the mean of
the common topics.

The results of the experiment described in Algorithm 3 are given
in Table 2. We first observe by following along the rows of the
adjusted score results that the error of adjusted scores is propor-
tional to

p

(N − n)/(n ·N), as the analysis predicts. (To be ex-
act, the analysis makes this prediction of RMSE, but it holds true
of MAE as well.) In contrast, the error of the unadjusted scores,
with true scores mixed in, is proportional to(N −n)/n, and hence
declines at a slower rate. For narrow pools, score adjustment offers
a marked improvement over unadjusted scores, even for a hand-
ful of topics in the common topic set. If the number of common
topics is increased, quite high fidelity can be achieved even with
only a couple of fully-pooled systems. As the pool width increases,
the error of the unadjusted scores decreases, and while adjustment
still improves accuracy, the relative benefit for the same number
of common topics is decreased. On the other hand, as the number
of unassessed documents decreases, the effort involved in taking a
given number of topics for whichr was unpooled and filling in the
unassessed documents decreases, allowing a larger common topic
set to be created for the same amount of overall effort.

Table 3 reports the same experiment as Table 2, but this time
using condensed lists to handle unassessed documents in the un-

Pool
Width

Mixed Adjusted
Unadj

10 10 15 20

2 0.451 0.361 0.060 0.046 0.037
4 0.384 0.308 0.059 0.045 0.037
10 0.283 0.226 0.054 0.041 0.033
20 0.231 0.185 0.050 0.038 0.031
40 0.177 0.141 0.045 0.035 0.028

Table 4: MAE of unadjusted and adjusted scores, on the TREC
8 manual dataset. Metric is RBP (p = 0.8). Other details are
as for Table 2.

pooled system, both for the unadjusted scores and as the base for
the adjusted scores. Only the mixed scores with10 true scores
mixed in have been reported; the remainder decline at the same
rate as for Table 2. Condensed lists tend to be biased in favor of
the unpooled system (see Figure 1), but the error is not uniform.
Particularly in the case of very narrow pools, condensed scores on
some topics are less than true scores. This means that variability
is high relative to bias, which in turn leads to high variance in the
adjustment estimator (see Equation 4). Equation 6 predicts that
this will diminish the accuracy of the adjusted scores relative to
the unadjusted, condensed ones, and this is indeed what we ob-
serve in Table 3. For a pool width of2, the unadjusted scores
are more accurate than the adjusted scores with10 common top-
ics, and are roughly as accurate for a pool width of4. As the
pool width increases, though, the error becomes more consistently
one-sided (that is, condensed scores are higher than true ones), and
the adjusted scores become more reliable. In any case, increasing
the number of common topics improves the quality of the adjusted
scores more rapidly than of the unadjusted ones.

Section 3.1 observed the problems caused for inferring the ad-
justment from the pooled systems to the unpooled system when
the latter is significantly different from the former. The point was
demonstrated using the manual runs of the TREC 8 AdHoc track
as the unpooled systems. In Table 4, the unpooled scores of these
same manual runs are adjusted using the common-topic method in-
stead. Since there are only50 topics altogether in this test set, the
number of topics that can experimentally be held as common is
limited. Nevertheless, the utility of the common-topics adjustment
method is clear. The error of the estimate with only10 common
topics and2 pooled systems is well under half that of the unad-
justed score with40 pooled systems. Even if the unpooled system
is distinctly different from the pooled ones, score adjustment from
common topics provides serviceable accuracy.



4. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a simple and robust sampling

method for correcting the score bias suffered (or enjoyed) by un-
pooled systems. The method proposed does require that a certain
number of topics be fully assessed for the otherwise unpooled sys-
tem, as well as for the systems in the pool. Additionally, the fully-
assessed topics must be randomly sampled from the same popula-
tion as the existing, partially-unpooled ones. However, we suggest
that both of these conditions will often exist already in private lab
work, and can in most cases be cheaply and reliably attained if they
do not. In return, our method offers an adjustment method that is
unbiased and much lower variance than either using the unadjusted
scores, or making do with only the fully-assessed topics. In addi-
tion, the degree of variance itself can be estimated from the topics
used, and additional common topics added to reduce it if desired.

The unpooled score approximations dealt with in this paper have
been the simple ones of, on the one hand, assuming unassessed
documents to be irrelevant, or on the other hand, excising them
and condensing the rankings. However, the method can be applied
to any approach to approximating unpooled scores — or indeed
any situation in which an expensive, exhaustive assessment on one
small set of topics might be supplemented by a cheaper, approxi-
mate assessment on a second, larger set. This might indeed include
methods where the approximated evaluations are made with little
or no human assessment at all.

Score adjustment could also be incorporated with more complex
sampling and inferential schemes, as one form of evidence amongst
many. Score adjustment has the particular advantage that, whereas
pooling or other sampling bias is a problem for many schemes, ad-
justment directly addresses and substantially solves the issue. Per-
haps its best use in this field might be as a sort of sanity check for
more complex methods.

However, the main attractions of the sampling method proposed
here are the minimal inferential assumptions it makes, and its ro-
bustness to pooling bias. This recommends it to evaluators working
for the most part in a traditional pooled setup, and who are wary of
more complex, potentially more fragile inferential methods.
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