
LBSC 690: Information Technology
Lecture 02

Networking and the Internet

William Webber
CIS, University of Maryland

Spring semester, 2012

The Network

◮ Networking is pushing bits down wires (and over
wavelengths) between one computer and another.

◮ Essentially, we need:
◮ A transport medium (copper wire, fiber, spectrum)
◮ A way of transmitting (modulating, digital → analogue),

transporting, and receiving (demodulating, analogue →

digital) bits
◮ A way of addressing the bits from source to destination

Ethernet: the medium

◮ Transport medium is cable (coaxial, twisted pair, or
fiber-optic)

◮ Connected with other computers in a local area network by
hubs

◮ Bits are:
◮ Coaxial, twisted pair: positive, negative voltage for 1, 0
◮ Fiber-optic: pulses of light

Ethernet: transportation

◮ Data sent out over network in frame
◮ Frame is a sequence of bit segments, defined by protocol
◮ Frame wraps data in envelope with from, to address

Ethernet: addresses

f0:de:f1:0e:de:2f

◮ Each Ethernet device has a 48-bit identifier, called a “MAC
address”; generally printed using 12 hexadecimal values

◮ Each Ethernet frame contains destination and source MAC
address

◮ All messages broadcast to every machine on network
◮ Device knows that frame is “for it” if it contains its MAC

address

Ethernet: messaging protocol

Basic problem on shared medium: who gets to transmit?

◮ Ethernet solution: anyone can transmit whenever
◮ Having transmitted, they check to see if someone else

transmitted at the same time
◮ If so, they wait for random period of time, transmit again

Diversion: hexadecimal numbers

Decimal 181
Binary 1011 0101
Hex B5

◮ Decimal is based ten (0-9); binary base 2 (0-1);
hexadecimal base 16 (0-E).

◮ One hexadecimal digit represents four binary digits (bits).
◮ Hexadecimal frequently used to represent “inherently”

binary values

Excursus

◮ What happens if two devices on the same LAN have the
same MAC address?

◮ If MAC addresses are assigned purely at random, how
likely is it that any two given addresses will be the same?

◮ If Ethernet frames are broadcast to every computer on the
LAN, what stops one computer snooping on another’s
communications?

◮ What about wireless?

Ethernet: error detection and correction

Ethernet frame contains two segments for error detection,
correction:

1. Preamble: alternating pattern of 101010 . . . bits, to detect
the frame, followed by 11 to start body of frame

2. Frame check: Pattern of bits, calculated depending on
content of rest of frame. Automatically detects error bursts
up to 32 bits long.

Simplest check code is a single (“parity”) bit, set so that the
number of 1 bits in a message is even. What is the maximum
number of errors that this code can detect?

Beyond the LAN

◮ Ethernet only takes us
as far as the door of the
lab (or the router-modem
on our desk)

◮ We need a way of
talking beyond our own
local area network

◮ . . . and of
communicating with
computers on local area
networks using a
different technology (e.g.
wireless)

IP: the Internet Protocol

Internet protocol: allows communication between any two
machines worldwide (and off planet!). Requirements:

1. How to package up data

2. How to address machines worldwide

3. How to find the way from one machine to another

4. How to transit over the various network technologies

IP: the datagram packet

◮ IP packet, like Ethernet frame, combines header with data
◮ Header contains to, from address, and other management

fields
◮ Data can be up to 65k in size

IP: addresses

Internet addresses, under IP version 4 (IPv4), are made up of 4
numbers, from 0 to 255, separated by “.”. E.g.:

192.168.1.125 the IP address of my laptop as I write this (at
home)

128.8.237.26 the IP address of the server hosting the
University of Maryland

184.26.100.110 the IP address of the server hosting the
Whitehouse home page

Excursus: the IP address space

IP addresses: four values from 0 to 255

◮ How many bits in the binary representation? How many
bytes?

◮ How many distinct addresses does this support? Does that
seem enough?

◮ The internet is (very slowly) migrating to the new IPv6
protocol, which has 128 bits. How many addresses does
this support?

IP addresses: allocation

◮ IP addresses are allocated by
central organization to
registrars, and further
subdivided to ISPs,
companies, etc., to maintain
uniqueness.

◮ There are also certain
“private” IP addresses (e.g.
192.168.1.XXX) which are
only on the local network;
bridge to internet must
translate

◮ And 127.0.0.1 always means
“the current computer”

IP routing: finding a way from one machine to another

◮ Beyond local network, packet must be sent through a
router.

◮ LAN typically has a single router (“gateway”) to the internet
◮ Internet backbone uses complicated route discovery

algorithms that weigh:
◮ Availability
◮ Distance
◮ Load

to dynamically find a route for packets

IP routing: from UMD to UniMelb
Source IP: 128.8.107.183 Destination IP: 128.250.148.40
Command: traceroute www.unimelb.edu.au

1 Vlan224.css-dual-r1.net.umd.edu (128.8.225.252) 0.368 ms
2 Gi3-10.css-core-r1.net.umd.edu (128.8.0.29) 0.381 ms
3 Gi3-2.ptx-fw-r1.net.umd.edu (128.8.0.86) 0.548 ms
4 129.2.0.246 (129.2.0.246) 0.446 ms
5 clpk-umd-i2.maxgigapop.net (206.196.177.152) 0.708 ms
6 xe-7-2-0-0.lvl3-t640.maxgigapop.net (206.196.178.90) 2.235 ms
7 i2-lvl3.maxgigapop.net (206.196.178.46) 27.103 ms
8 ae-8.10.rtr.atla.net.internet2.edu (64.57.28.6) 15.438 ms
9 xe-1-0-0.0.rtr.hous.net.internet2.edu (64.57.28.112) 38.818 ms
10 * ge-6-1-0.0.rtr.losa.net.internet2.edu (64.57.28.96) 567.616 ms
11 * * *
12 so-1-0-0.bb1.a.hnl.aarnet.net.au (202.158.194.109) 149.043 ms
13 so-2-1-0.bb1.a.syd.aarnet.net.au (202.158.194.105) 228.471 ms
14 so-2-0-0.bb1.a.mel.aarnet.net.au (202.158.194.33) 240.650 ms
15 ge-0-0-0.bb1.b.mel.aarnet.net.au (202.158.194.182) 240.428 ms
16 tengigabitethernet2-1.er2.unimelb.cpe.aarnet.net.au (202.158.200.99) 255.421 ms

17 gw1.er2.unimelb.cpe.aarnet.net.au (202.158.206.162) 255.276 ms
. . .

IP transport: routing over diverse networks

◮ Each time packet goes through gateway, router, it
potentially transits from one network protocol to another:

◮ 802.11g from laptop to wireless router
◮ Ethernet from wireless router to DSL modem
◮ ATM from DSL modem to telephone exchange
◮ SONET for internet backbone

◮ IP packet is wrapped in the (lower-level) packet/frame
format of transport layer

◮ This can mean splitting packet into multiple frames (e.g. up
to 65k IP into 1.5k Ethernet)

The protocol stack

Protocol Layer

HTTP Application
TCP Transport
IP Internet
Ethernet Data link
IEEE 802.3u Physical

◮ There are layers above IP, and
layers below Ethernet

◮ Each layer wraps data from
the layer above

◮ Each layer relies upon the
layer below to carry out
lower-level operations

◮ This defines a protocol stack

TCP: packets to connections

Protocol Layer

HTTP Application
TCP Transport
IP Internet
Ethernet Data link
IEEE 802.3u Physical

◮ Ethernet, IP packet-based
systems:

◮ No guarantee packets will
arrive in sequence or at all.

◮ No standard reply
mechanism.

◮ TCP (transmission control
protocol) provides reliable,
persistent, two-way
connections

◮ Implemented as another
packet format, wrapped in IP.

TCP as transport layer and IP as
inter-network layer are so
ubiquitous that the two are almost
always combined: TCP-IP.

TCP ports: linking programs, not just computers

◮ IP links computers, not programs
◮ TCP implements program addressing through concept of

ports; 16-bit numbers (like phone extensions)
◮ Servers listen on well-known, low-number ports:

◮ Unencrypted web servers listen by default on port 80.
◮ Encrypted web servers listen on port 443.
◮ Mail servers listen on port 25.

◮ Clients (e.g. web browser) open arbitrary high-numbered
ports to contact server, tell server their port number

The application layer

Protocol Layer

HTTP Application
TCP Transport
IP Internet
Ethernet Data link
IEEE 802.3u Physical

◮ TCP provides connection, but
programs still need to agree
on how to talk to each other

◮ This need filled by
application-specific protocols

◮ Different programs have
different protocols for
communication. We’ll look just
at just one: HTTP.

HTTP: requesting and sending web pages

◮ HTTP (Hyper-Text Transport Protocol) provides protocol for
web server, browser to communicate.

◮ A URL typed into a browser location box, such as:

http://www.umd.edu/directories/colleges.cfm

has a few main components

http: the protocol (others include https:, ftp:).
www.umd.edu the server to send the request to (port

defaults here to port 80, but can be specified
by “:<PORT>” at end).

directories/colleges.cfm the “path” to request from the
server. Often refers to a file to retrieve, but
can have arbitrary interpretation to server.

http://www.umd.edu/directories/colleges.cfm

HTTP: request header

GET /directories/colleges.cfm HTTP/1.1
Host: www.umd.edu
User-Agent: Mozilla/5.0 (Ubuntu; X11; Linux x86 64; rv:9.0.1)

Gecko/20100101 Firefox/9.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: keep-alive
Cookie: switchTo5x=XXX; unam=XXX; utma=XXX; utmz=XXX;

CFID=XXX; CFTOKEN=XXX; utmb=XXX; utmc=XXX
Cache-Control: max-age=0

Figure: HTTP request

What my browser sends when requesting the UMD directory of
colleges and schools (cookie contents blacked out)

HTTP: response header

HTTP/1.1 200 OK
Date: Mon, 06 Feb 2012 16:09:23 GMT
Server: Apache
Transfer-Encoding: chunked
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

Figure: HTTP response header

The start of what the UMD web server sends my browser; the
actual web page itself follows after this.

Calling servers by names, not numbers

◮ IP addresses are 32-bit numbers (e.g. 128.8.237.26, for
the UMD web server).

◮ But numbers are hard to remember.
◮ Also, numbers encode specifics of network topology that

might change (if a web site moves to a different hosting
provider, for instance).

◮ It is easier, and superior, to use names to refer to servers.

DNS: a directory for the internet

◮ DNS (the Domain Name System) provides a distributed
database of host name to IP address (and vice versa)
mappings:

◮ User provides host name (e.g. www.umd.edu)
◮ Program requests IP address for name from nearest

domain name server (e.g. 128.8.237.26)
◮ DNS request has its own application-layer protocol, on top

of TCP or alternative transport layer called UDP, in turn on
top of IP.

◮ Program uses returned IP address to address IP packet to
host.

◮ Your computer must know the IP address (not host name)
of DNS server! (but this often provided by dynamic
configuration)

DNS: anatomy of hostnames

◮ Hostnames have hierarchical structure, reading from right
to left.

◮ For instance, “http://www.cis.unimelb.edu.au/”:
.au This is an Australian domain

.edu Among au domains, an educational one
.unimelb Amongst au educational domains, this is

called “unimelb” (University of Melbourne)
www.cis Amongst unimelb domains, this is the “cis”

subdomain (Computing and Information
systems), and the “www” machine

◮ Common TLD (top-level domains) are national domains,
plus “.com”, “.edu”, “.gov”, “.org” etc.. Latter are
ambiguously international or US domains.

DNS: a distributed, hierarchical database

Every DNS server cannot store every domain name!

◮ Requests forwarded to top-level domain server, redirected
to authoritative server

◮ If changing host name to IP address mapping, only need to
change authoritative server for for domain.

◮ Lookups cached by other servers for speed; cached results
expire after a period.

End-to-end: fetching a web page
1. User types URL into browser, or clicks link, e.g. http://www.umd.edu/directories/colleges.cfm

2. Browser parses URL into protocol (http:), hostname (www.umd.edu), and path (/directories/colleges.cfm)

3. Browser opens TCP-IP connection to DNS server by IP address (at work, 128.8.76.2) (details as per web page request below).

4. Browser creates DNS protocol request for IP address for hostname www.umd.edu , sends to DNS server.

5. DNS server 128.8.76.2 recursively asks authoritative DNS server for umd.edu domain, 128.8.5.2 .

6. DNS server responds to browser with IP address 128.8.237.77 , also using DNS protocol (and caches the answer).

7. Web browser requests operating system to open TCP connection to 128.8.237.77 on port 80.

8. Operating system opens high port, say 12020, on local machine, returns connection to it to web browser.

9. Web browser constructs HTTP request, starting:

GET /directories/colleges.cfm HTTP/1.1
Host: www.umd.edu

writes it to connection.

10. Operating system wraps HTTP request in TCP packet giving to port of 12020, from port of 80, sequence number of 1, other details.

11. Wraps TCP packet in IP packet giving to IP address of 128.8.237.77 , from address of 128.8.107.183 (my laptop address).

12. TCP packet split up into 1500 byte chunks (if necessary), wrapped in Ethernet frames, sent to LAN gateway.

13. LAN gateway joins up Ethernet frames, strips header and footer, reconstitutes IP packet, looks at address, figures out next step on route.

14. Gateway wraps IP packet in networking protocol for step to next router.

15. Subsequent routers repeat steps 13 and 14, until IP packet arrives at server.

16. Operating system of server receives IP packet, peeks at TCP header to find port 80.

17. Operating system strips (but remembers) IP and TCP wrappings, extracts contents (which are an HTTP request, but OS doesn’t care), writes contents to web
server’s end of connection.

18. Server splits off new, high port to manage this connection (say, 25121); will inform browser of new port number with return TCP packet.

19. Web server reads HTTP request, sees that it is for path /directories/colleges.cfm , takes whatever steps necessary to construct content for this path (in
this case, runs a script in a web development language called Cold Fusion).

20. Web server construct HTTP response, with header starting

HTTP/1.1 200 OK
Date: Mon, 06 Feb 2012 16:09:23 GMT

and after header, the content of the web page.

21. Operating system of server wraps response in TCP packet, giving local high port of 25121, remote high port of 12020.

22. Wraps TCP packet in IP package, with from address of 128.8.237.77 , and to address of 128.8.76.2 .

23. IP packet routed back to machine running browser, using steps 13 and 14.

24. Operating system at browser end receives Ethernet frames containing response IP packet; reconstitutes packet.

25. Operating system peeks in IP packet, sees port of 12020 .

26. Operating system extracts content of IP packet (which happens to be an HTTP response), and writes it to connection at port 12020.

27. Browser reads HTTP response, displays web page.

And this takes perhaps a hundredth of a second for a local page, half a second to go across the globe.

http://www.umd.edu/directories/colleges.cfm
http:
www.umd.edu
/directories/colleges.cfm
128.8.76.2
www.umd.edu
128.8.76.2
umd.edu
128.8.5.2
128.8.237.77
128.8.237.77
128.8.237.77
128.8.107.183
/directories/colleges.cfm
128.8.237.77
128.8.76.2
12020

Summary: networking on the internet

Protocol Layer

HTTP Application
TCP Transport
IP Internet
Ethernet Data link
IEEE 802.3u Physical

The network stack:

◮ Upper layers call lower
layers for transport

◮ Applications, services
only see relevant layer

Host IP

www.umd.edu 128.8.237.77
apple.com 17.149.160.49
whitehouse.gov 23.1.44.110
unimelb.edu.au 128.250.148.40
bbc.co.uk 212.58.224.21

The domain-name system:

◮ Maps names to IP
addresses

◮ Logical name
independent of
cyber-physical (IP
address) location

Philosophy: the importance of open standards

◮ The internet relies crucially on common, and therefore
open, standards

◮ Developed originally as a joint
academic/defense/government project.

◮ Very hard to believe it would have emerged from private
industry (at least from large IT firms).

◮ At time of public emergence, Microsoft thought future
instead was in multimedia CD-ROMs.

◮ Standards-making process still surprisingly (to a cynic like
me) open and informal.

◮ Many standards developed through RFC process.
◮ Emphasis on working systems rather than perfect

idealizations.

Pragmatics: web services

◮ Web has accelerated move to client-server architecture:
◮ Client machines runs interface software (e.g. web browser),

on your desktop, laptop, or mobile.
◮ Server runs backend service (e.g. web server) on

centralized machine, typically in dedicated data center.

◮ Physical location of server often of only incidental practical
interest.

◮ Recent interest in cloud computing:
◮ Client data held on servers, not local machine
◮ Web service providers do not maintain individual servers
◮ Instead, buy resources (compute time, memory, disk

space), dynamically and virtually provided by distributed
server farms.

Pragmatics: setting up a web site

1. Go to domain registry, e.g. http://gkg.net , and buy
domain name of your choice (if available!) for around $10
per year.

2. Rent shared hosting space, e.g. from
http://www.siteground.com , with database and
scripting language, for around $50 to $100 per year.

◮ You will get remote access to a shared server sitting in a
data center in (say) Dallas.

3. Develop and upload your site – the expensive part.

http://gkg.net
http://www.siteground.com

Implications: Where is a web site?

A web site can be:

◮ Run by a company in Germany
◮ Hosted on a machine in London
◮ . . . or server farms across Europe
◮ Registered with a Canadian domain name register
◮ Using a US (.com) address

Where is the website? This matters particularly in the law:
under whose jurisdiction is it?

.com

Is the website where the domain is?

Emerging practice (at least for US govt) is to treat domain name
as defining website location:

◮ PIPA, SOPA legislation defined .com , .edu , .us etc. sites
as “in the US”, and sites with non-US country-specific TLD
(.uk , .se) as “outside the US”.

◮ megaupload.com executives criminally prosecuted in US,
though company registered in HK, executives (mostly)
German, and living in NZ.

◮ The Pirate Bay changes its URL from
thepiratebay.org to thepiratebay.se to avoid
seizure by US government

But what about bit.ly ?

.com
.edu
.us
.uk
.se
megaupload.com
thepiratebay.org
thepiratebay.se
bit.ly

Is the website where the data is?

◮ High-volume services (e.g. Google) replicate themselves
around the world, shift data to where it is closest to current
users.

◮ With Cloud Computing, even smaller sites can be
automatically shunted between data centers internationally.

◮ Which country’s (for instance) privacy laws apply to data
that is distributed internationally?

Who is responsible for a web page?

There are various strategies that users can use to determine
who is responsible for a web page:

◮ Look for explicit attributions of responsibility (e.g. “about us
links”)

◮ Look up the directory path hierarchy (e.g. for
http://www.umiacs.umd.edu/ ˜ wew/teaching/690/spring12/ ,
look at
http://www.umiacs.umd.edu/ ˜ wew/teaching/690/ ,
http://www.umiacs.umd.edu/ ˜ wew/teaching/ ,
http://www.umiacs.umd.edu/ ˜ wew/ , etc.)

http://www.umiacs.umd.edu/~wew/teaching/690/spring12/
http://www.umiacs.umd.edu/~wew/teaching/690/
http://www.umiacs.umd.edu/~wew/teaching/
http://www.umiacs.umd.edu/~wew/

Who is responsible for a web page? (continued)

$ whois umd.edu
Domain Name: UMD.EDU

Registrant:
University of Maryland
Office of Information Technology
College Park, MD 20742
UNITED STATES

Administrative Contact:
University of Maryland
Office of Information Technology
Bldg 224, Room 3309-C
College Park, MD 20742-2411
UNITED STATES
(301) 405-3003
dnsadmin@noc.umd.edu

Technical Contact:
University of Maryland
Office of Information Technology
Network Operations Center
College Park, MD 20742
UNITED STATES
(301) 405-3003
dnsadmin@noc.umd.edu

Domain record activated: 31-Jul-1985
Domain record last updated: 28-Jun-2011
Domain expires: 31-Jul-2012

◮ See who the domain is
named for, using whois
or similar tool. You may
need to prune the
domain (for instance,
www.umiacs.umd.edu
to umd.edu)

www.umiacs.umd.edu
umd.edu

Who is responsible for a web page? (continued)

◮ The top-level domain (TLD) may give you clues. For
instance,

◮ A .edu domain is only given to accredited tertiary US
institutions.

◮ A .gov.uk domain is only given to UK government entities
But most extensions have few or no registration
requirements:

◮ At one stage, you had to have a registered Australian
business name to get a .com.au domain name.

◮ Now, though, anyone in this room (with a credit card) could
buy a .com.au domain name in five minutes for $30.

◮ A traceroute request or IP geolocation service may tell
you where the server is hosted.

◮ But this generally means little about the organization
behind it

.edu
.gov.uk
.com.au
.com.au

APPENDIX

The following appendix summarizes the process of fetching a
web page from a web server.

End-to-end: fetching a web page I

1. User types URL into browser, or clicks link, e.g.
http://www.umd.edu/directories/colleges.cfm

2. Browser parses URL into protocol (http:), hostname
(www.umd.edu), and path
(/directories/colleges.cfm)

3. Browser opens TCP-IP connection to DNS server by IP
address (at work, 128.8.76.2) (details as per web page
request below).

4. Browser creates DNS protocol request for IP address for
hostname www.umd.edu , sends to DNS server.

5. DNS server 128.8.76.2 recursively asks authoritative
DNS server for umd.edu domain, 128.8.5.2 .

6. DNS server responds to browser with IP address
128.8.237.77 , also using DNS protocol (and caches the
answer).

http://www.umd.edu/directories/colleges.cfm
http:
www.umd.edu
/directories/colleges.cfm
128.8.76.2
www.umd.edu
128.8.76.2
umd.edu
128.8.5.2
128.8.237.77

End-to-end: fetching a web page II
7. Web browser requests operating system to open TCP

connection to 128.8.237.77 on port 80.

8. Operating system opens high port, say 12020, on local
machine, returns connection to it to web browser.

9. Web browser constructs HTTP request, starting:

GET /directories/colleges.cfm HTTP/1.1
Host: www.umd.edu

writes it to connection.

10. Operating system wraps HTTP request in TCP packet
giving to port of 12020, from port of 80, sequence number
of 1, other details.

11. Wraps TCP packet in IP packet giving to IP address of
128.8.237.77 , from address of 128.8.107.183 (my
laptop address).

12. TCP packet split up into 1500 byte chunks (if necessary),
wrapped in Ethernet frames, sent to LAN gateway.

128.8.237.77
128.8.237.77
128.8.107.183

End-to-end: fetching a web page III
13. LAN gateway joins up Ethernet frames, strips header and

footer, reconstitutes IP packet, looks at address, figures
out next step on route.

14. Gateway wraps IP packet in networking protocol for step to
next router.

15. Subsequent routers repeat steps 13 and 14, until IP packet
arrives at server.

16. Operating system of server receives IP packet, peeks at
TCP header to find port 80.

17. Operating system strips (but remembers) IP and TCP
wrappings, extracts contents (which are an HTTP request,
but OS doesn’t care), writes contents to web server’s end
of connection.

18. Server splits off new, high port to manage this connection
(say, 25121); will inform browser of new port number with
return TCP packet.

End-to-end: fetching a web page IV
19. Web server reads HTTP request, sees that it is for path

/directories/colleges.cfm , takes whatever steps
necessary to construct content for this path (in this case,
runs a script in a web development language called Cold
Fusion).

20. Web server construct HTTP response, with header starting

HTTP/1.1 200 OK
Date: Mon, 06 Feb 2012 16:09:23 GMT

and after header, the content of the web page.

21. Operating system of server wraps response in TCP packet,
giving local high port of 25121, remote high port of 12020.

22. Wraps TCP packet in IP package, with from address of
128.8.237.77 , and to address of 128.8.76.2 .

23. IP packet routed back to machine running browser, using
steps 13 and 14.

/directories/colleges.cfm
128.8.237.77
128.8.76.2

End-to-end: fetching a web page V

24. Operating system at browser end receives Ethernet frames
containing response IP packet; reconstitutes packet.

25. Operating system peeks in IP packet, sees port of 12020 .

26. Operating system extracts content of IP packet (which
happens to be an HTTP response), and writes it to
connection at port 12020.

27. Browser reads HTTP response, displays web page.

And this takes perhaps a hundredth of a second for a local
page, half a second to go across the globe.

12020

	Networking example: Ethernet
	The network stack
	Policy and practice implications
	Appendix
	End-to-end: fetching a web page

