
LBSC 690: Information Technology
Lecture 06

RDBMS and SQL

William Webber
CIS, University of Maryland

Spring semester, 2012

The Relational Database Management System

The Relational Database Management
System (RDBMS)

◮ A computer program, often running
on a server

◮ Constructs and maintains relational
databases and their data

◮ Provides an interface that allows
users, or more generally programs,
to create, retrieve, update, delete,
and query data

Database vs. DBMS

Note possible confusion in terminology:

Database ◮ A schema of multiple related entities
◮ An instantiation of that schema, with its data

DBMS A (server) program that holds databases

A (R)DBMS has multiple (generally independent) databases. A
database has multiple (related) tables. A table has multiple
fields.

But people sometimes refer to the DBMS as the “database”.

Classes of DBMS

Three main classes of DBMS:

Embedded Database runs entirely inside a single program, as
a “library” of that program. Example: SQLite.

Desktop Database runs as a client application, typically on
a desktop machine, accessed directly by user
(often with GUI interface). Example: MS Access.

Server Database runs as server in client-server
architecture. Example: MySQL, Oracle.

We’ll look at server-style DBMS for the next few slides.

DBMS architecture

Client-server DBMS architecture

◮ A DBMS can run on a server by itself and be connected to
over the network

◮ A DBMS can serve multiple programs
◮ The primary customer of DBMS are programs, not

(directly) users

Services of a DBMS

As well as basic database management, a DBMS provides
services such as:

Concurrency multiple users and operations can be processed
in parallel

Transactions complex operation either fully completes or is
rolled back

Replication database can be replicated over multiple nodes
(servers), for performance and/or redundancy

Access control access rights of users and applications can be
controlled (e.g. read-only permissions, deny
access to certain tables or databases)

Consistency checking database can check that relations
between entities are consistent (e.g. foreign keys
point to something)

MySQL

We’ll be using the MySQL database

◮ Open source and cross-platform
◮ Widely used in website development
◮ Increasingly acquiring enterprise

features
◮ so much so that Oracle bought

them to stop them being a threat

PhpMyAdmin

As an interface to MySQL, we’ll be using PhpMyAdmin

◮ Web-based semi-graphical interface to MySQL
◮ Allows (reasonably) user-friendly interface for:

◮ creating tables
◮ inserting data
◮ performing simple queries

◮ Also allows us to drop down in SQL (the programming
language for RDBMS – see later) if required

Setup

◮ I’ve installed MySQL and PhpMyAdmin on my server;
PhpMyAdmin is accessible at:
https://codalism.com/phpmyadmin

◮ Each student has had an account created for them, and a
database created for them with the same name as their
account (login details sent separately)

◮ Note that we have:
◮ Multiple databases hosted in the one DBMS
◮ Access control (one account can’t see another account’s

databases)
◮ PhpMyAdmin acting as a program that talks to the DBMS

(and to us)

https://codalism.com/phpmyadmin

Demo: logging in, and basic view

◮ Log in as admin user, view multiple databases
◮ Log in as normal user, view only single database
◮ Demonstrate separate, CLI interface to same RDBMS

Creating a table in PhpMyAdmin

◮ First, select the database
◮ Then, click “create table” in left-hand
◮ Type in table name (avoid spaces and punctuation except

for “ ” (underscore))
◮ Select “InnoDB” as Storage Engine (for checking of foreign

keys)

Demo: create table

◮ Select personal database
◮ Hit “create table”
◮ Enter table name
◮ Select “InnoDB” as Storage Engine

Table columns

Fields that you want to care about are:

Column the name of the column (avoid spaces and
punctuation except for “ ” (underscore))

Type type of column. Choose “VARCHAR”
(variable-length character) for a brief character
column, “TEXT” for a large amount of text (e.g. a
paragraph of free text)

Length if you’ve chosen “VARCHAR”, choose maximum
length of the field. Better too big than too small!

Defining primary keys

For primary key columns:

◮ Make the type “INT”
◮ Set index to “PRIMARY”
◮ Select “AUTO INCREMENT”

This way, every time we add a new record, the database will
create a new primary key for it, a number one bigger than the
last key

Demo: defining student table

◮ Create primary key field “ID”
◮ Create additional fields “GIVEN” and “FAMILY”

Defining relations

For foreign key columns:

◮ Create the table with the primary key you’re linking to first!
◮ Make the foreign key type “INT”
◮ Set the index to “INDEX”
◮ Once created, go to “Structure” tab and select “Relation

view”
◮ Under the foreign key, select the primary key it links to

NOTE: you’ll get different options depending upon the Storage
Engine type

Demo: defining drawing table

◮ Create table “Drawing”
◮ Add foreign key back to “Student”
◮ Enforce foreign key relationship under “Relations view”

Adding data

To add data, go to the “Insert” tab

◮ Select the table you want to add to, in the left-hand menu
◮ Go to the “Insert” tab.
◮ Insert the desired data (you can ignore the “Function”

column).

Note that you have to manually select the correct foreign keys!

Demo: adding data

◮ Add two students
◮ Add three drawings

Browsing data

◮ The “Browse” tab gives you a paginated view of the data in
a table

◮ Only becomes highlighted when some data has actually
been added

Demo: browse tab

◮ Go to browse tab for “Drawing”

Searching

◮ The “Search” tab allows for simple searches
◮ Each field of the table can be tested
◮ For more complex, in particular multi-table, queries, we

need to use SQL (see below)

Demo: search

◮ Go to search tab for “Student”
◮ Search for students with given name “Jane”

The RDBMS interface

◮ To use an RDBMS, we need a way to interact with it
◮ Method needs to be (reasonably) standard (not a different

interface for each DBMS).
◮ Method also needs to be programmatic (i.e. a GUI alone is

not adequate)

The Structured Query Language

SQL (Structured Query Language): the standard RDBMS
interface

◮ A language, in the sense that HTML is a language.
◮ With a defined syntax.
◮ Supporting:

◮ Data definition (creation of tables)
◮ Data manipulation (creating, updating, and deleting records

in tables)
◮ Data queries (retrieving records by id or by query

expressions)

Note that PhpMyAdmin communicates with MySQL using SQL.

Data definition language

CREATE TABLE Student (
i d i n t NOT NULL AUTO INCREMENT PRIMARY KEY,
given varchar (30) NOT NULL ,
fam i l y varchar (30) NOT NULL ,
y e a r l v l i n t

) ;

◮ Basic statement is CREATE TABLE

◮ Contains list of field with name, type, and constraints
◮ Here, for instance, given is a character field of maximum

length 30 which cannot be empty (NULL)

PhpMyAdmin will give you SQL statements to create a table if
with the “Export” tab.

Demo: DDL from PhpMyAdmin

◮ Select “Student” table
◮ Select “Export” tab
◮ Select “SQL” as format
◮ View SQL for creating Student table

Data insert

INSERT INTO Student (given , fami l y , y e a r l v l) VALUES
(’ Jane ’ , ’ Smith ’ , 6) ,
(’ Anne ’ , ’ Black ’ , 4) ;

◮ Insertion is performed with the INSERT INTO statement.
◮ Note that character values must be quoted, e.g. ’ Jane’, but

integer values are not

PhpMyAdmin echoes back the SQL statement when you do an
insert.

Demo: data insert

◮ Select the “Student” table
◮ Select the “Insert” tab
◮ Add a new student, and hit “Go”
◮ Observe the SQL statement (note: it is more verbose than

one might write by hand; e.g., it includes the database
name, and quotes field names)

Data query

SELECT fami ly , y e a r l e v e l FROM Student
WHERE given= ’ Jane ’ AND y e a r l e v e l > 5;

◮ Queries are implemented using the
SELECT fields FROM table WHERE condition statement

◮ Multiple fields can be extracted; ∗ will extract all fields

PhpMyAdmin shows query sql under “Query” tab.

Demo: data query

◮ Select the “Student” table
◮ Select the “Search” tab
◮ Search for students whose given name is “Jane” and

whose year level is greater than 5
◮ Observe the SQL statement

Multiple-table queries and joins

◮ In modelling, we broke composite information down into
separate, linked tables

◮ e.g. separate the “Student” from the “Drawing” table
◮ In querying, we often want to re-unite these linked records

into a single results
◮ e.g. a list of drawings with the names of the students who

drew them

◮ This re-united of linked records is known as a join

(Inner) joins

SELECT Student . given , Student . fami l y , Drawing . t i t l e
FROM Student , Drawing
WHERE Student . y e a r l e v e l = 5
AND Drawing . s t u d e n t i d = Student . i d ;

◮ Joins are implemented using the SELECT statement.
◮ We specify which table each field comes from
◮ . . . list the tables
◮ . . . and link up foreign and primary key:

◮ Here, Drawing.student id = Student.id

(Technically, this is known as an inner join. There are other join
types, but they are rare in practice.)

Demo: join query

◮ Select the “Student” table
◮ Select the “SQL” tab
◮ Enter the previous query

Building database applications

◮ PhpMySql is little more than an administrative interface
◮ . . . and no user is going to use SQL directly
◮ Even for data entry, more support is needed (for instance,

checking field types; selecting foreign keys)
◮ For a user-facing application, of course, a much richer

interface is required

The three-tier architecture

◮ Most web applications follow a three-tier architecture:
Presentation tier The browser window, running on the

client side (HTML, CSS, perhaps some
client-side programming)

Logic tier An application, written in a programming
language, running on the server side (PHP,
Java, ASP . . .)

Data tier The database, running behind the server side.

The web application

◮ We need to implement the logic tier, as a web application
or program

◮ This talks HTML over HTTP to the browser at the front end
◮ And talks SQL to the database on the backend

Object-relational mapping (ORM)

◮ In the application program, we often use a layer (library)
that “hides” the SQL from us,

◮ . . . lets us deal instead with simpler (though less powerful)
representations of the database, in the idiom of the
programming language

◮ One such representation is the Object-Relational Mapping,
which wraps relational SQL in an object-oriented model

We’ll look in more detail at ORM later in the course . . .

Take-away points: RDBMS

◮ A (relational) database management system ((R)DBMS)
manages our access to a (relational) database

◮ Full-scale RDBMS run as independent servers, often on
separate computers

◮ RDBMS provides additional services such as transactions,
parallelization, redundancy, etc.

But, we need an interface to talk to a RDBMS.

Take-away points: MySQL and PhpMyAdmin

◮ MySQL is a widely-used RDBMS, particularly in web
applications

◮ PhpMyAdmin provides an administration-level interface to it
◮ MS Access is an alternative for a client-only, single-user

systems

But, generic admin interfaces are not adequate for real users.

Take-away points: SQL

◮ The Structured Query Language (SQL) is the standard
language for communicating with relational databases.

◮ Provides expressions for defining the schema, inserting
and updating data, and querying that data

◮ including joins to reunite records separated in the schema

◮ Primarily useful as a programmatic interface, or an
emergency admin interface in the hands of power users.

But, no user is going to talk SQL to the database.

Take-away points: Database architecture

◮ Generally, an application needs to be developed to
interface between user and database

◮ In web (and other) development, a three-tier model of
presentation, logic, and data is used

◮ The logic layer talks HTML to the browser, SQL to the
database

We’ll start looking at the application layer next week.

	The RDBMS
	MySQL and PhpMyAdmin
	SQL
	Pragmatics
	Summary

