LBSC 690: Information Technology Lecture 10 Multimedia and Web Integration

> William Webber CIS, University of Maryland

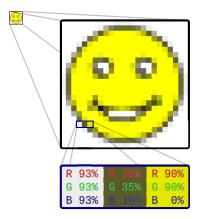
Spring semester, 2012

Today's lecture

Three parts:

 Digitally representing and compression images, video, and sound (old multimedia)

- Integrated diverse web services into a web site (new multimedia)
- Critically considering benefits of multimedia (for curmudgeons)


Two basic ways of representing digital graphics:

Raster picture represented as matrix (array) of dots (pixels) (png, jpeg, gif)

Vector picture represented as set of lines and shapes (ps, pdf, svg)

Note: most physical displays are raster graphics, so vector graphics must be converted to raster to display.

Raster graphics

- Divide (square) image into h × w matrix of pixels:
 - h pixels high
 - w pixels wide
- For each pixel, hold *n*-bit value

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

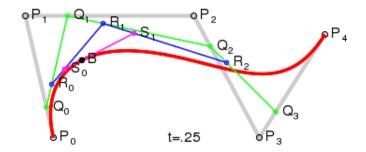
 ... representing 2ⁿ different colors

⁰Image: Wikipedia

Color depth

Color depth refers to number of bits per pixel (or pits per channel, or number of distinct colors)

Black and white one bit per pixel (1 = white, 0 = black)


Grayscale single channel, *n* bits, for 2^n shades of grey

RGB three channels, *n* bits each, for 2^{3n} colors

8 bits per channel or 24 bits overall for 16 million colors called *true color*

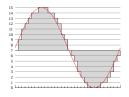
RGBA add alpha channel: degree of transparency/opaqueness

Vector graphics

- Drawing represented as series of lines, curves, filled shapes
- Each shape has an "equation" behind it
- For 2-d graphics, a fundamental equation is the Bezier curve
- ► For 3-d graphics, a fundamental equation is polygon

⁰Image: Wikipedia

Vector vs. raster


- Vector graphics can be arbitrarily scaled without loss of resolution
 - raster graphics have finite resolution, pixelate on scaling
- But vector graphics can only be computer(+human) generated
 - you can't take a vector graphic photo
 - our AI not sufficient to figure out equations behind physical representation of real world
- Also, vector graphics can only approximate real shapes, shades humans may wish to draw

Summary: use vector graphics where you can, and stay in vector graphic format for as long as you can!

Taking photos: analogue \rightarrow digital

- Taking photos an analogue to digital conversion:
 - We convert the continuous visual field
 - into a pixelized representation
- Two choices on the digital end:
 - The resolution or number of pixels to capture (measured in megapixels), in 2d
 - The fidelity or color depth to capture at each point, in bits per pixel (not normally described with digital cameras)
- Beyond some resolution and depth, the human eye can't detect the difference
- But, quality has as much to do with the analogue to digital conversion (sensitivity of color detector, quality of optics, degree of noise). Otherwise, you're just getting a very high-fidelity representation of noise!

Audio

- Sound is a (compound) (continuous) wave in a medium (particularly, air)
- We convert (for each stereo channel) by:
 - sampling at certain points in time
 - measuring strength (sound pressure) of wave, to an integer value (2ⁿ for n bits), at each point of time (quantization)
- Both sampling rate and quantization effect fidelity of signal
- ► Note similarity / differences with 2d image analogue → digital conversion

Video

- Video can be represented as ordered series of 2d images
- Additional choice is number of frames per second (FPS)
- Human eye can detect below 12 fps, but strained by above
- Film projectors now often have 72 fps, but each frame repeated three times, for 24 distinct images per second
- \blacktriangleright Hz of your monitor is the refresh rate (\approx FPS), with 60Hz common

Compression: why

- Images, video, sound, can take up a lot of space raw
 - How many bytes would a true-color image from a 14MP digital camera take up?
- But can be very effectively compressed.
 - JPEG version of photo can be less than 10% of size of naive representation.

Compression: how

The basic idea in compression is to find repetitive (redundant) information, and represent it more concisely.

- In image:
 - Assign codes only to colors actually used
 - Assign shorter codes to frequent colors
 - Represent run of n pixels of color k not as kkkkk...k, but nk
- In video (additional to image):
 - Record the difference between a previous frame and the current frame
- In sound:
 - Record the change in sound pressure from previous level

Predict future changes from past ones

Relative to "naive" (full, raw) representation

Lossless no information (fidelity) is lost; raw representation can be perfectly recreated (GIF, TIFF, PNG; WAV)

Lossy information (fidelity) is lost; raw representation can only be approximately recreated (JPEG; MP3; MPEG)

How of lossy compression

- Simple lossy compression: just reduced sampling rate / resolution / color depth / quantization globally
- More advanced: reduce fidelity locally (e.g. in most red area, give more of color map to red shades than green)

- Gives higher compression rates than lossless
- ... particularly for types of file that have less raw redundancy (e.g. photos vs. line drawings)

Why of lossy compression

Why can we do this?

- Human eye, mind, ear can (partially) recreate approximated sound
- ► Analogue → digital was lossy to begin with!

Lossless compression of non-analogue data (e.g. text) doesn't (generally) make sense.

Integrating web services in your site

Much dynamic, networked functionality and content can now be embedded directly on web page

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

... without need for backend server support (on your server)

Architecture: simple embeds

- Simplest architecture embeds pagelet from other site in <iframe>
- For example, youtube videos are embedded in this way.

- But little or no
 - customizability or programmability by embedder
 - interactivity with rest of page

Architecture: Javascript

Richer embeds use Javascript

- Include link to (generally obfuscated) Javascript library (= set of functions) from service provider in your web page (downloaded by client's browser)
- Library sets up, manipulates on-page widget using DOM calls
- Call library functions from Javascript in your page to initialized, run, and interact with embedded widget
- Uses AJAX to communicate with back-end service (theirs, not yours)

Twitter

- Twitter provides a Twitter widget that is embedded inside your page. http://terpconnect.umd.edu/~wew/twitter.html
- Twitter also provides a web page where you can generate the HTML / Javascript to cut-and-paste for your widget https://twitter.com/about/resources/widgets

HTML / Javascript then cut-and-past to website (view source)

Google Maps

- Google Maps widget a more complicated interface, provide much greater flexibility and programmability. http://terpconnect.umd.edu/~wew/gm.html
- Google provides example code that can be cut and pasted and then modified – as long as you understand basic Javascript (which you do!) (Also "wizards" for creating cut-and-paste)
- Interaction of Google Map library with DOM to create widget is a little more visible. (View source)
- The API is very extensive; we're scarcely scratching the surface here.
- Note: the number of calls without a registration key is limited!

Multimedia and comprehension

Rockwell and Singleton, "The Effect of the Modality of Presentation of Streaming Multimedia on Information Acquisition", Media Psychology, 9:179-191, 2007

- 132 subjects (student volunteers).
- Subjects watched presentation on Mali, Africa.
- Three presentation modalities:
 - 1. Text only (powerpoint presentation)
 - 2. Text with audio (presenting material almost word-for-word)

3. Text with audio and video (video of presenter)

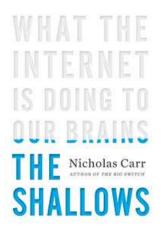
Multimedia and comprehension (cont.)

- Students were given 10-question quiz on their understanding of the material.
- Mean number of correct answers per presentation medium:
 - Text only: 7.04.
 - Text-audio: 6.37.
 - Text-audio-video: 5.98.
- Students also asked to rate presentation on various factors on (scale 1 to 5).
- Text-only version significantly preferred to multimedia (audio not significantly different); e.g.:
 - "The presentation was educational": 4.24 / 4.00 / 3.73
 - "The presentation was interesting": 3.47 / 3.00 / 2.84

Hypertext and comprehension

Niederhauser et al, "The Influence of Cognitive Load on Learning from Hypertext", J. Educational Computing Research, 23(3): 237–255, 2000.

- 46 subjects (student volunteers).
- Parallel articles on theories of learning:
- Constructivist knowledge of outside world is an interpretation Behaviorist outside world is objectively knowable through (scientifically-directed) experience
 - Hypertext links allowed students to click between corresponding article sections
 - Students could choose to use or not use hypertext features


Hypertext and comprehension (cont.)

- Use of hypertext features measured
- Students tested on knowledge after reading
- Use of hypertext led to large and significant decrease in students' comprehension of text

 ... even after controlling for reading comprehension, domain knowledge, etc..

Further reading

Popular treatment of the "book reading mind" vs. the "internet mind":

