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Abstract

Full-text retrieval systems employ heuristics to match documents to user queries. Re-

trieval correctness cannot, therefore, be formally proven, but must be evaluated through

human assessment. To make evaluation automatable and repeatable, assessments of

which documents are relevant to which queries are collected in advance, to form a test

collection. Collection-based evaluation has been the standard in retrieval experiments

for half a century, but only recently have its statistical foundations been considered.

This thesis makes several contributions to the reliable and efficient measurement of

the behaviour and effectiveness of information retrieval systems. First, the high vari-

ability in query difficulty makes effectiveness scores difficult to interpret, analyze, and

compare. We therefore propose the standardization of scores, based on the observed

results of a set of reference systems for each query. We demonstrate that standardiza-

tion controls variability and enhances comparability. Second, while testing evaluation

results for statistical significance has been established as standard practice, the impor-

tance of ensuring that significance can be reliably achieved for a meaningful improve-

ment (the power of the test) is poorly understood. We introduce the use of statistical

power analysis to the field of retrieval evaluation, finding that most test collections can-

not reliably detect incremental improvements in performance. We also demonstrate the

pitfalls in predicting score standard deviation during design-phase power analysis, and

offer some pragmatic methodological suggestions.

Third, in constructing a test collection, it is not feasible to assess every document

for relevance to every query. The practice instead is to run a set of systems against

the collection, and pool their top results for assessment. Pooling is potentially biased

against systems which are neither included in nor similar to the pooled set. We propose

a robust, empirical method for estimating the degree of pooling bias, through perform-

ing a leave-one-out experiment on fully pooled systems and adjusting unpooled scores

accordingly. Fourth, there are many circumstances in which one wishes directly to

compare the document rankings produced by different retrieval systems, independent

of their effectiveness. These rankings are top-weighted, non-conjoint, and of arbitrary

length, and no suitable similarity measures have been described for such rankings. We

propose and analyze such a rank similarity measure, called rank-biased overlap, and

demonstrate its utility, on real and simulated data.

Finally, we conclude the thesis with an examination of the state and function of re-

trieval evaluation. A survey of published results shows that there has been no measur-

able improvement in retrieval effectiveness over the past decade. This lack of progress

has been obscured by the general use of uncompetitive baselines in published exper-

iments, producing the appearance of substantial and statistically significant improve-

ments for new systems without actually advancing the state of the art.
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described in Section 8.3.2, was published as an invited article in the IEEE Data Engi-
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and precise numbers may differ slightly from those of the original publications.

Document preparation, tools and data

The thesis was prepared with the LaTeX document formatting language, using the
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float, graphicx, listings, multirow, natbib, rotating, times, url, and

xcolor packages.

Statistical analysis, simulation experiments, and general programming tasks were

performed in the R language and environment for statistical computing, using the

plotrix, xtable, and doMC packages. The trec eval program was used to generate

similarity metrics it supports; other metrics were implemented in C or C++, compiled

using the gcc compiler.

Graphics were prepared using R, the TikZ graphics system for TeX, and Inkscape.

Images in Figures 1.2, 1.3, 6.1, and 6.3 were taken from the icon library of GNOME

desktop project, and are licensed under the GNU General Public License. The im-

age of the mouse in Figure 3.12 was created by ArtFavor of OpenClipArt, and was

downloaded from http://www.openclipart.org/detail/39871. The image of

the ruler in Figure 3.12 was created by jetxee of OpenClipArt, and was download

from http://www.openclipart.org/detail/39871.
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Chapter 1

Introduction

In the early 1950s, technical librarianship faced a crisis. The scientific boom sparked

by the Second World War had released a flood of publications, approaching a million

new articles each year. Scientists could no longer stay abreast of current research by

general reading alone. Papers relevant to a new project, but not previously known

to the researcher, had to be retrieved at the project’s outset, and the librarian had to

facilitate this retrieval. A variety of cataloguing schemes had been suggested as tools

for retrieval, but none had been rigorously tested for effectiveness, and all were labour-

intensive to implement.

In responding to technical information’s rapid growth, librarians and information

scientists developed the field of information retrieval. The defining discovery of the

field was that complex schemes for organizing and cataloguing information into hier-

archical taxonomies did little better than simply indexing the plain words occurring in

the text: the crucial part of information retrieval lay in the process of retrieval. The

finding that taxonomy was redundant was little short of scandalous—after all, Western

information science had since Aristotle been founded on subdividing knowledge by

genus and species. But the effect was liberating. Word occurrences are readily indexed

by computer, and retrieval technology could be constructed on top of such indexes

without having to solve deep problems in human language analysis and semantics.

Significantly, the sufficiency of word occurrence indexing was not argued theoretically

(which, after centuries of such theoretical dispute, would hardly have had an impact),

but demonstrated empirically, through careful evaluation.

In the mid 1990s, users of the newly-emerged web faced a crisis. The number of

web sites was growing rapidly, and finding information by following a trail of links

from a few popular central sites was no longer an adequate access method. Manually

curated directories such as that of Yahoo! (Figure 1.1) were popular, but manual cura-

tion was expensive and scaled poorly. Experienced users could not keep up with the

growth in the number of sites, even in areas of personal interest to them; and, for novice

users, the task of finding useful information on the web was daunting.

Faced with the mushrooming growth of the web in the second half of the 1990s, a

new kind of service provider turned to the decades-old technology of information re-

trieval, producing the web search engine. Web search transformed information retrieval

from the rarefied activity of librarians, researchers, journalist fact-checkers, and intelli-

gence analysts, to the daily activity of almost the entire computer-enabled population.

In doing so, search providers finally bridged a long-established gap between theory

and practice. As early as the 1960s, researchers had developed statistical techniques

1
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Figure 1.1: The Yahoo! home page, http://www.yahoo.com, on August 5th,

1997, the month before the domain name google.com was registered. Note the

mixture of a search interface (at the top) with a manually curated, hierarchical di-

rectory of the web (taking up the rest of the page). (Retrieved from the Internet Archive,

http://web.archive.org/web/19970805071802/http://www10.yahoo.com/.)

http://www.yahoo.com
google.com
http://web.archive.org/web/19970805071802/http://www10.yahoo.com/
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Figure 1.2: Schematic of the information retrieval process. The user poses a query

to the search engine. The engine then retrieves documents from the corpus that it es-

timates to be relevant to the query, ranks them by decreasing probability or degree of

relevance, and returns them to the user. The process can be iterated. The effective-

ness of the retrieval process can be measured by the utility or satisfaction that the user

receives from the results list.

for effectively retrieving and ranking documents against plain keyword queries. The re-

trieval technology deployed in practice, though, used logical, Boolean query languages

that relied upon the patience and expertise of the querier to formulate complex query

expressions, precisely specifying their information need. But web users little expertise,

and less patience, for constructing complex queries. Search engines therefore turned

to simple queries and sophisticated retrieval, finally deploying, on a massive scale, the

techniques developed three decades earlier, so creating the modern search engine. To

the surprise once more of some search technologists, simple keyword search simply

worked. In an increasingly competitive search market, though, how could a provider

verify the effectiveness of their search results, and compare their offering with that of

their competitors?

Search technology connects simple queries with unannotated documents, relieving

both the producer and the consumer of information from the complexity of matching

information resources to information needs (Figure 1.2). The result is tools that allow

neophyte users to find relevant information, across billions of web documents, in a

fraction of a second. But in doing away with complex, formal information represen-

tations in favour of rough approximations, statistical information retrieval introduced

an important problem. It is not possible to objectively and deterministically state that

an information object matches an information request, even in the terms in which the

request is formulated. One can say that a document has been manually assigned a cer-

tain classification under a hierarchical taxonomy; one can even say that a document

contains a Boolean combination of terms; but one cannot conclusively say that an un-

categorized document meets a user’s information need as expressed by a handful of

keywords. The contemporary retrieval system sits at the interface between computa-

tional formalism on the one hand, and the ambiguity of human cognition on the other.

There is uncertainty in what the retrieval system should do, and therefore in how correct

a set of results are.
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The ambiguity of the retrieval task makes the question of retrieval effectiveness a

crucial and contested one. Methods for evaluating effectiveness are therefore essential,

in both research and deployment. Retrieval evaluation relies fundamentally on human

assessment of result quality. The noncomputability of effectiveness makes information

retrieval a deeply empirical discipline, closer to natural or even social science than to

formal computational theory. The complex, interlocked relations that connect impre-

cise queries, uncurated documents, and inchoate information needs, are not given, but

must be hypothesized and tested on observed search behaviour.

The importance of empirical evaluation in information retrieval has been recog-

nized since the field began; the initial work that established the primacy of retrieval

over indexing gained much of its impact from the meticulous and painstaking exper-

imental work on which it was based. But the same scale of data that makes retrieval

technology necessary, also makes manual assessment costly. While result quality can

be measured by directly assessing user satisfaction with, or utility gained from, re-

trieval results, such direct measurement of the user’s satisfaction with the results lists

as a whole is neither reusable nor reliably repeatable. Assessing the results of any sin-

gle system is time-consuming, and there are many competing retrieval algorithms, each

tuned by numerous parameters. A parameter change that takes a few minutes to decide

upon, and a few seconds to run, could take days to manually assess. Moreover, if each

research group produces its own, independent assessments of retrieval quality, then not

only is much effort duplicated, but also reproduciblity is impaired, and the potential

for bias is introduced. And tuning nowadays is often performed automatically through

machine learning; fitting a manual review stage into each learning iteration would be

unworkable.

The need for scale and automatability, plus the desire for repeatability and objec-

tivity, has led the information retrieval community to develop hybrid evaluation tech-

nologies, part manual, part automated. The most important of the evaluation tools is

the test collection: a corpus of documents, with a set of queries (known as topics) to

run against the corpus, and judgments of which documents are (independently) rele-

vant to each query. These relevance judgments must be manually formed: but once

made, the test collection can in principle be reused indefinitely for fully automated

evaluation. The result is an automated and re-usable evaluation method, based on a

simplified model of retrieval (see Figure 1.3 on page 7).

Test collection evaluation has been the bedrock of retrieval research for half a cen-

tury. Collection-based experimentation has grown even more in importance since the

arrival, beginning in the early 1990s, of large scale, collaboratively developed, and

readily obtainable test collections. And (to judge from publicly available information)

the test collection method is also core to the quality assurance and improvement meth-

ods of commercial web search engines.

The practice of retrieval evaluation, though, has run well ahead of the theory. It

was only at the end of the 1990s that the reliability, efficiency, and interpretability of

evaluation results began to be formally investigated. The delay was in part because

it was only after large-scale collaborative experiments had been running for several

years that the datasets needed for a critical investigation of evaluation became avail-

able. Initial enquiries, while foundational, tended to be either ad-hoc, or else applied

statistical methodology developed in other areas to retrieval evaluation without consid-

ering the field’s distinctive features. These omissions are currently being remedied by

the research community.

It is in the context of the effort for greater reliability, accuracy, robustness, and

efficiency in collection-based retrieval evaluation that this thesis is presented. Building
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on the foundational work in the area, and employing the large evaluation datasets now

available, we make major advances in the accuracy and comparability of evaluation

scores; in the design of efficient and reliable experiments; in the extensibility of test

collections in dynamic evaluation environments; and in the measurement of retrieval

similarity without relevance assessment. We also offer these technical contributions

with an awareness of the wider context of evaluation, and of the necessity of mixing

experimental rigour with research innovation.

Thesis structure

The field of information retrieval has a long history, and evaluation has been central to

the field since the beginning; appreciating this history helps us understand the field’s

current practice and philosophy. An overview of the history of retrieval evaluation is

given in Chapter 2. We begin by examining the inspirational early evaluation work done

in the library of the Cranfield Aeronautical College, in the United Kingdom, during the

late 1950s and early 1960s, which established the test collection method; and the incor-

poration of this method into automated, computational retrieval by the SMART project

at Cornell University, in the United States, beginning in the mid 1960s. These efforts

established from the start the field’s core evaluation methods. But the full potential

for large-scale, comparable retrieval evaluation was not realized until the production

of industrial-size test collections by the TREC effort, starting in 1992. TREC pro-

vided the first large-scale, standard document corpora, and produced query sets and

relevance judgments to go with them. These collections provided the basis for finally

demonstrating that the sophisticated statistical retrieval techniques developed over pre-

ceding decades worked on large, realistic collections—validating the technology, and

spurring the engineering, that in a few years would be deployed in creating the web

search engines so ubiquitous and essential today. Moreover, the TREC experiments

brought together dozens of competing research teams, each of whom generated re-

trieval results against the one test collection. Besides demonstrating the contemporary

state of the retrieval art, these submissions formed the data sets of runs and scores that

have provided the fertile ground for the empirical study of retrieval evaluation. We

make rich use of the TREC run data in later chapters.

Chapter 3 lays down the technical foundation of the thesis. The test collection

method achieves its automatability and repeatability by working with a simple, ab-

stract model of the retrieval process. The model approximates the human perception

of retrieval quality as an assessment of which documents are independently relevant or

irrelevant to each query. Once the retrieval of relevant documents has been accepted

as the retrieval system’s goal, human assessment only needs to be performed once, in

advance, and the evaluation cycle can be automated. The ranked list of documents

returned by a retrieval system is converted to a vector of relevance assessments, and

this vector scored using a retrieval effectiveness metric. Many such metrics have been

proposed, as well as competing criteria for choosing between them. The mean score

a system achieves across the collection’s query set, under whatever metric is selected,

is the measure of the system’s effectiveness on that collection. But the collection, and

particularly its queries, are only representative: what we care about is how predictive

the observed score is of the system’s effectiveness in general. To make such general-

izations in a rigorous way requires the use of statistical methods, particularly tests of

statistical significance. Statistical tools also have other applications in the field, such

as comparing the system rankings induced by different evaluation methods, and sum-

marizing result data in a human-comprehensible way.
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Before test collection evaluation can be deployed, the test collection itself must be

constructed. Ideally, every document in the corpus would be assessed for relevance

to every query; in reality, exhaustive evaluation of even moderately-sized corpora is

impractical. The standard solution is to assess only the pool of documents ranked

highly by a representative set of retrieval systems. But such pools are potentially biased

against subsequent, unpooled systems, and evidence suggests that this bias, though for-

merly slight, is becoming more serious as corpus sizes grow. Scoring methods have

been suggested for handling the incompleteness of relevance assessments, along with

more efficient techniques for locating relevant documents for assessment. Recently,

attention has turned to sampling and inferential methods of system evaluation. The

(pooled) test collections used in the thesis are those formed by the TREC effort, along

with the runsets of systems participating in the official TREC experiments. We con-

clude Chapter 3, and the background section of the thesis, by describing and analyzing

these, our experimental data sets.

The contributions of the thesis begin in Chapter 4, where we propose the method

of score standardization to control topic score variability. Topics have enormously

variable levels of difficulty, such that effectiveness scores typically differ more between

topics than they do between systems. Put another way, the score that a retrieval system

achieves on a topic tells us more about the difficulty of the topic than the quality of

the system. Individual run scores are therefore largely meaningless in isolation; and,

since collection scores are aggregated from run scores, the interpretation of collections

scores is also fraught. Moreover, inter-system score deltas vary markedly between

topics, meaning that some topics have much greater impact even on comparative scores

than others—and frequently these topics are the easier ones, whose higher mean scores

allow greater range for difference.

The standard solution to topic variability is to normalize scores by the maximum

score achievable on the topic, given the number of (known) relevant documents. In

practice, though, the maximum score is a poor indicator of topic difficulty, and nor-

malization gives only a slight decrease in topic variability, as empirical results given in

Chapter 4 show. Instead, we propose that topic difficulty and score variance should be

empirically measured as the mean and standard deviation of the scores of a set of ref-

erence systems. Scores achieved on the topic, both by reference systems and by other

systems, are then standardized by the reference factors, leading to identical score means

and standard deviations for each topic on the reference set, and greatly decreased vari-

ability on other system sets. Standardized scores are immediately interpretable, even

in isolation; a standardized score of 0, for instance, means “at the average of the refer-

ence set”. By using a common reference set across different collections, standardized

scores are made comparable between collections (a use to which standardization is

put in Chapter 8). These features of standardization are demonstrated on TREC data.

We conclude Chapter 4 with an examination of reference set dependency and outlier

values, and propose compensatory transformations.

The importance of verifying the generalizability of experimental results through

the use of a test of statistical significance is well established in information retrieval.

Less understood, though, is the need to predict the reliability of proposed experiments.

In particular, the experimental designer, whether using new or existing data, wishes

to know how assured they are that, if a meaningful level of improvement is achieved

by a new over a baseline system, this improvement will actually result in a statistically

significant result—what is known as the statistical power of the test. If an improvement

exists, but the experiment is not powerful enough to detect it, then not only is the

experiment wasted, but a promising line of research may be neglected. In Chapter 5, we
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Figure 1.3: Schematic of retrieval evaluation using test collections, with summary of

contributions of the thesis.
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introduce statistical power analysis to information retrieval. Power analysis provides

a tool for assessing the experimental discrimination of existing collections. We turn

this tool on the TREC collections and runsets, and conclude that at least 100, and

often closer to 200, topics are required to reliably separate a high-performing system

from a reasonable baseline. The 50-query topic sets of standard TREC collections are

not powerful enough to detect the incremental improvements achievable in a mature

technology such as information retrieval.

The experimenter who is unable to use existing collections, due to their lack of

power or to other causes of unsuitability, is forced to develop their own collection, at

which point design-phase power analysis is essential. Statistical power is a function of

several variables: the hypothesized true difference in performance between systems;

the strictness of the significance test; the variability of score deltas across topics; and

the number of topics used. Typically, the number of topics is the primary variable under

the experimenter’s control, while the main unknown variable is the standard deviation

of inter-system score deltas. We demonstrate in Chapter 5 that delta deviation varies

significantly across system pairs. Estimation of standard deviation based on past expe-

rience is therefore unreliable, while running a trial experiment sets quite wide bounds.

An appealing solution is the incremental one of comparing systems on an increasing

number of topics, refining estimates of standard deviation as we go, and continuing un-

til the desired power is achieved. The incremental approach, however, leads to a subtle

bias in favour of achieving statistical significance, which we demonstrate and empiri-

cally quantify in Chapter 5. For the experiment designer, creating a new topic set for a

system comparison, we therefore propose a hybrid methodology. We conclude Chap-

ter 5 by considering the question of whether greater power is achieved, for a given

amount of assessor effort, by broad but shallow, or by narrow but deep, evaluation;

we find that shallower evaluation, over a larger number of topics, gives considerably

greater statistical power.

As discussed in Chapter 3, the exhaustive evaluation of every document for rele-

vance to each topic is infeasible, and a pooling approach is used instead, in which only

pooled documents are assessed, and unpooled documents are assumed to be irrelevant.

Pooling is potentially biased against unpooled systems, since they may return unpooled

but in fact relevant documents. Concern about such bias is growing with the increase in

corpus size. In Chapter 6, we propose a robust, empirical solution to pooling bias. The

idea is to observe the bias that a system suffers from being excluded from the pool, and

adjust the system’s score accordingly. The pooling bias against an unpooled system

can be estimated by a leave-one-out experiment on the pooled systems, but such an

estimate is only accurate to the extent that the unpooled system is similar to the pooled

ones. A more reliable method is to pool the otherwise unpooled system, along with the

fully pooled systems, on a common subset of queries. Then the unpooled system is held

out of the pool for this subset, and the observed bias against it used to derive the adjust-

ment factor. Experiments reported in Chapter 6 demonstrate that this method of score

adjustment can reduce pooling bias by 75% with as few as 20 common topics. The

proposed method of score adjustment is particularly appealing in a dynamic evaluation

environment, such as the lab of a working search engine, where new retrieval methods

and new topics are being continually added. New methods will be fully pooled and as-

sessed, alongside existing techniques, against new queries as part of regular evaluation.

These new queries can then be used as the common topics to adjust the new method’s

scores on old queries, without having to revisit the old queries’ assessment.

Retrieval effectiveness is not the only basis for comparing the ranked document lists

returned by search engines. In many circumstances, what matters is the similarity of
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the results produced by different search engines, or by the one search engine at different

times, without regard to effectiveness. Even where effectiveness is the ultimate con-

cern, result similarity may be used as a cheaper proxy. An efficiency short-cut in query

evaluation cannot be doing much harm to effectiveness if it does not greatly change the

document rankings; and only those topics where rankings do change noticeably need to

be assessed for effectiveness. To perform comparisons between ranked document lists

requires a similarity measure that is suited to the peculiar characteristics of such lists.

In Chapter 7, we identify three key characteristics: disjointness; top-weightedness; and

arbitrariness of cutoff depth. Rankings with these characteristics we label as indefinite

rankings, and a measure of similarity between them which embodies these character-

istics is an indefinite rank similarity measure. The literature describes no suitable in-

definite rank similarity measures. The standard rank similarity measures do not handle

disjointness; and the (small) set of measures that do handle disjointness are either un-

weighted or non-monotonic in cutoff depth. Indefinite rankings are also found in many

situations other than document rankings: indeed, they occur wherever a top-weighted

ranking with finite cutoff is induced over an infinite (or very large) domain. Indefinite

rank similarity measures therefore have a wide application.

In Chapter 7, we propose the first formally described similarity measure on indef-

inite rankings, which we call rank-biased overlap (RBO). Instead of correlation, the

RBO measure is based upon set overlap, which is a more natural fit for disjoint rank-

ings. The measure therefore handles disjointness readily. It is tunably top-weighted,

allowing the experimenter to apply the degree of top-weighting dictated by their experi-

mental context. And, by incorporating a convergent (geometric) series of rank weights,

RBO is monotonic in cutoff depth; evaluation to a given depth sets bounds on the score

achievable with further evaluation. We further derive a reasonable point estimate within

these bounds, one which is consistent in its behaviour with increasing depth of evalu-

ation. We show RBO’s utility by using it to compare eleven different search engines,

over 113 queries, submitted daily for four months. We also demonstrate RBO’s su-

periority over other disjoint rank similarity measures in comparing experimental runs

under efficiency optimizations or parameter tuning, and its tighter correlation with ef-

fectiveness scores on simulated data.

The thesis concludes in Chapter 8. We review the detailed, technical path that the

thesis has beaten to its destination, then broaden our view for a survey of the state of

information retrieval evaluation. A strength of the test collection methodology is its

repeatability, allowing different systems to be evaluated under the same experimen-

tal conditions. Retrieval effectiveness can therefore be compared between systems

and over time. Between-system comparisons are common, both at TREC and in pub-

lished research, but over-time comparisons are scarce. The seemingly fundamental

question of whether retrieval technology is improving over time has rarely been asked;

we therefore ask it in Chapter 8. First, we employ score standardization to compare

effectiveness in ad-hoc retrieval at TREC, finding no clear evidence of improvement

since TREC 3 in 1994. Next, we survey published results on TREC collections over

the past ten years. The collections are widely used, and the protocol of testing a new

method against a baseline is generally applied, often with statistically significant re-

sults. Yet the published results show no upward trend in effectiveness; worse yet,

the same, mediocre baseline scores are reported each year, and improved upon by the

similar margins. Our finding raises serious questions about the supposed rigour of

information retrieval evaluation.

Chapter 8 then turns to examining the current challenges and opportunities facing

retrieval evaluation. These challenges include: extending the test collection method-
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ology to handle the diversity and ambiguity of web queries, and the scale and dy-

namism of web corpora; accessing and incorporating user data, such as query logs and

click-through records; assessing the potential of crowdsourcing as an evaluation re-

source; and propagating the achievements of retrieval evaluation into other fields. As

impressive as the field’s methodological achievements are, though, our finding of much

method but little improvement over the past decade reminds us that a strong method-

ology is not an end in itself. Therefore, we conclude the chapter, and the thesis, with

a critical appraisal of the sociology of methodology, and consider to what extent the

influence of test collection evaluation is encouraging formulaic research and discour-

aging innovative ideas.



Chapter 2

Historical background

Information retrieval as a discipline has a fifty-year history, dating back to the begin-

ning of computerization, when the potential for automating the indexing and retrieval of

documents was first appreciated. Indeed, the earliest work in the field was done without

the use of computers. From its beginning, the discipline has had a strong experimental

tradition. Its focus on empirical validation and evaluation is one of the characteris-

tics that distinguish information retrieval from its more theoretically-minded parent,

information science. The history of information retrieval evaluation, the subject of this

thesis, goes back as far as that of information retrieval itself. The discipline’s strong

experimental tradition had been one of its strengths. However, an excessive empiricism

has arguably narrowed the field’s focus. Meanwhile, the development of the web, and

the importance of web search engines, pose great challenges to existing experimental

methodologies.

In this chapter, we examine the history of information retrieval evaluation over the

past half century. We begin in Section 2.1 with the Cranfield tests of the late 1950s

and 1960s, which introduced a standard experimental methodology that the field has

followed ever since. We also describe the SMART project, which took Cranfield’s eval-

uation methodology and adapted it to computerization in the early 1960s. The SMART

project did much to popularize the style of research and publication that now predomi-

nates in the area, as well as to develop the area’s fundamental technologies of statistical

document retrieval. In Section 2.2 we survey developments in the decades that followed

the foundational period, notable for their meager contribution to evaluation methodol-

ogy. We then describe the founding of the TREC project in the early 1990s, which

achieved a hundredfold increase in the scale of the collections available to researchers,

and did much to inspire a renaissance in experimental investigation of IR techniques—

but also, some would argue, drawing attention away from pressing questions about the

user search experience. Finally, in Section 2.3, we look at the impact that the rise of

the web has had upon the field of information retrieval, and the challenges it poses to

retrieval evaluation.

2.1 Foundations of IR evaluation

The field of retrieval evaluation was established by two foundational efforts in experi-

mentation. The first is the Cranfield tests, undertaken in two main stages between 1957

and 1966. The second is the SMART project, starting in the early 1960s and running in

11
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various forms until the end of the century. Although carried out by clerical rather than

computerized means, the Cranfield tests established the standard experimental method-

ology for the field: system evaluation using a fixed test collection, consisting of doc-

uments, queries, and assessments of which documents are relevant to which queries.

The SMART project adapted this test collection methodology to a computerized en-

vironment, and popularized a model of research and publication based on automated

experiment that has persisted to today. Both projects were fundamental in establish-

ing the field’s experimental methodology, as well as its characteristic empiricism of

attitude.

2.1.1 Cranfield

The phrase “information retrieval” was coined in the 1950s (Robertson, 2005), but the

origins of the concept go back to the first library catalogues. Early thinking on the

subject emerged from librarianship and its theoretical arm, information science. This

early thinking was primarily philosophical in nature, concerned with how information

should be classified and organized. Different schools held different positions, and de-

bate was carried out between them on philosophical and anecdotal rather than empirical

grounds (Robertson, 2008a). However, with the burgeoning volume of publication, and

particularly of scientific literature, after the Second World War, practical concerns of

how to effectively access this literature became urgent (Cleverdon, 1991; Luhn, 1957).

In 1952, it was estimated that three quarters of a million scientific and technical articles

were being published annually (Wilson, 1952, page 10), and by 1960, researchers were

warning that (Maron and Kuhns, 1960, page 217):

documentary data are being generated at an alarming rate (the growth rate

is exponential—doubling every 12 years for some libraries), and conse-

quently consideration of volume alone make the problem [of retrieval] ap-

pear frightening.

The first rigorous experiments in information retrieval were those carried out in

the library of the Cranfield Aeronautical College under the direction of the librarian,

Cyril Cleverdon. The aim of these tests was to determine the most effective means of

indexing and retrieving documents, in particular scientific papers of the sort held in the

Cranfield library. The tests were performed in two main stages. The first stage ran

from 1957 to 1961, and is commonly called Cranfield 1, while the second, Cranfield 2,

ran from 1963 to 1966 (Cleverdon, 1962; Cleverdon et al., 1966; Cleverdon and Keen,

1966; Spärck Jones, 1981b). Cleverdon and his colleagues faced several challenges in

carrying out their experiments. Not the least of these was that the experiments were

not computerized; they were carried out manually, and quite laboriously, with indexes

written out by hand as card catalogues and searches performed by cross-referencing

information on these card indexes. As pioneers in the field, the Cranfield project also

had to develop an experimental methodology; their multi-volume reports attest to the

seriousness with which they took this responsibility. Two of the crucial questions for

any such methodology were, first, how to generate the retrieval requests for experimen-

tal use, and second, how to determine whether a retrieval request had been successfully

answered by the output of a search.

The approach taken to retrieval request formulation and resolution in Cranfield 1

was a straightforward one. From the collection of 18,000 papers on aeronautical sci-

ence that formed the test corpus, a set of source documents was selected; and for each
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source document, several questions were framed by domain experts, to which that doc-

ument was a satisfactory answer. A total of 1,200 questions were generated in this

way. Then, in the experiment, a search on a request was deemed successful if it re-

trieved the source document (Cleverdon, 1962). Although it bears some resemblance

to what is now called known-item search, the source document method of query formu-

lation used at Cranfield 1 was criticized at the time as artificial, and so a new method

of request generation and assessment was devised for the second round of experiments

(Spärck Jones, 1981b).

The approach taken at Cranfield 2 again started with the selection of a technical pa-

per from the corpus. This time, the author of each such paper was asked to write down

the original research question that had inspired the paper; this served as the request.

Some 225 requests were generated in this way. However, the originating document

was no longer the target of the search, and was removed from the document corpus.

Instead, the other papers in the corpus—1,400 of them—were examined to determine

whether they were relevant to the research question or not. The full set of papers was

filtered by Cleverdon’s research students. Only those papers that appeared likely to be

relevant based on their title, plus some other papers arrived at by bibliographic means,

were sent to the author of the research question for relevance assessment, with the re-

mainder summarily classed as irrelevant—a less than exhaustive method of assessment,

which attracted criticism later (Salton, 1992). Nevertheless, perfect or not, the result

of the assessment was that every paper in the test corpus was marked as relevant or ir-

relevant to every request. Then the searches were performed. In Cranfield 1, these had

been continued until the source document was located. However, at Cranfield 2, a list

of papers that matched each request, according to each of the indexing schemes under

examination, was returned. The correctness of this result, and hence the effectiveness

of the retrieval, was then evaluated using two complementary metrics: precision, the

proportion of returned documents that were relevant; and recall, the proportion of rel-

evant documents that were returned (Cleverdon et al., 1966; Spärck Jones, 1981b).

It was partly for operational reasons that, at Cranfield 2, the set of documents rel-

evant to each request was determined in advance of retrieval: the searchers were not

qualified to make relevance assessments, and domain experts were not on hand to assess

the documents as they were returned. Automation of assessment was at best a minor

consideration, as request processing was still performed manually. However, the model

proved to be well suited to computerized retrieval and the automation of its evaluation.

With the relevance judgements performed in advance, no further human involvement

was required for assessment; and, once the indexing and retrieval process had been

computerized, repeated experimental runs could be made and evaluated automatically.

The approach pioneered at Cranfield 2 has become the standard model for evaluating

information retrieval systems, in part due to its automatability (Voorhees and Harman,

2005b). This standard model can be defined as using a fixed test collection made up

of a document corpus, a set of queries or topics, and assessments of which documents

are relevant to which queries, which are known as qrels. The retrieval system runs the

queries against the document corpus, and for each query it returns a list of matching

documents. Each document list is marked up for relevance using the qrels, and sys-

tem effectiveness is then calculated using relevance-based metrics, such as precision

and recall. The system receives a score for each topic, and the per-topic scores are

aggregated, typically by taking the arithmetic mean, to provide a system score for the

collection as a whole. Because of its origins, the relevance-based test collection model

is frequently referred to now as the “Cranfield methodology” or even in recent years as

the “Cranfield paradigm” (Voorhees, 2002; Buckley and Voorhees, 2004).
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The Cranfield tests did much to inspire information retrieval’s empiricism of method-

ology, and to provide the content of this methodology. The results of the tests, more

subtly, also had a strong influence of the field’s empiricism of attitude. To appreciate

why, we need to understand something of the theoretical context in which the tests

were performed. At the time, the dogma of information science was that the effec-

tive retrieval of information required sophisticated indexing schemes (Spärck Jones,

1981b). Documents had to be classified into topics, which in turn were arranged in tax-

onomic hierarchies. Controlled vocabularies were employed to select index terms; or

terms were dispensed with altogether, and decimal subject codes used instead. Various

schools of thought existed as to which classification schemes and indexing methods

should be employed, but the debate between them was carried out more on philosophi-

cal than on empirical terms. Indeed, indexing and classification was as much pedagogic

and prescriptive as it was functional: it specified how information should be organized

in principle, not how it might effectively be accessed in practice (Robertson, 2008a).

By subjecting different indexing philosophies to empirical evaluation, the Cran-

field tests ran against the contemporary speculative grain. Nevertheless, the focus of

the tests was in accordance with current beliefs about the centrality of indexing lan-

guages. Cranfield 1, titled in its report “an investigation into the comparative efficiency

of indexing systems”, compared four different indexing languages (Cleverdon, 1962);

and Cranfield 2, self-described as “tests on index language devices”, identified sev-

eral indexing components, such as taxonomic links and synonyms, which were com-

bined to create 33 different index languages for evaluation (Cleverdon and Keen, 1966;

Cleverdon, 1967). Part of Cranfield 2’s elaborate indexing process can be observed in

Figure 2.1.

Just as the empiricism of the Cranfield tests was alien to the dogmatic attitudes of

indexing theory, so too the results of the tests were a direct challenge to its preconcep-

tions (Salton, 1992). Cranfield 1 failed to detect significant differences in effectiveness

between the different indexing languages, despite their different theoretical foundations

(Cleverdon, 1962, Chapter 9). Then Cranfield 2, with its careful delineation of different

indexing techniques and devices, found that in fact selecting plain index terms, such

as could be found directly in the text, outperformed the concept-based and thesaurus-

controlled languages that classification theory held to be essential. This was a sur-

prising and controversial result, as Cleverdon notes in his report (Cleverdon and Keen,

1966, page 252):

Quite the most astonishing and seemingly inexplicable conclusion that

arises from the project is that the single term index languages are supe-

rior to any other type. ... This conclusion is so controversial and so unex-

pected that it is bound to throw considerable doubt on the methods which

have been used to obtain these results ... A complete recheck has failed to

reveal any discrepancies, and ... there is no other course except to attempt

to explain the results which seem to offend against every canon on which

we were trained as librarians.

The Cranfield tests are an instance of the triumph of empiricism over theoretical

speculation. Long-held, intuitively attractive beliefs about how information should be

classified were demonstrated not to be true—or at least, not to be useful. Information

retrieval has ever since been a deeply, even stubbornly empirical field. It is famously

difficult to publish in the field, no matter how clever or compelling the ideas and theo-

ries might seem, without at least the appearance of thorough experimental validation.
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The legacy of Cranfield for information retrieval is not simply the existence of an exper-

imental methodology; it is the requirement that experimental evaluation be performed

before work is to be accepted.

2.1.2 SMART

If the Cranfield experiments seem backwards-looking from today’s perspective, with

their manual execution and focus on indexing languages, the experiments of the SMART

project feel surprisingly modern. Initiated by Gerard Salton and his collaborators in

the early 1960s, first at Harvard University but soon moving to Cornell, and continuing

in one form or another to the late 1990s, SMART was from the beginning an explo-

ration of the possibilities of statistically-based, fully-automatic indexing and retrieval

(Salton and Lesk, 1965), as first proposed by Luhn (1957). Evaluation at SMART used

the test collection model developed at Cranfield, and as soon as the Cranfield collec-

tion became available in machine-readable form it was incorporated into the SMART

test suite. SMART added an important innovation both to retrieval method and evalua-

tion methodology: that the answer to a search should be a list of documents ranked in

decreasing degree (or probability) of relevance, rather than an unordered set of exact

matches. The notion of ranking arises naturally from that of statistically-determined

degrees of match between a document and a query (Rocchio, 1966, Chapter 4), and is

of course familiar from present-day web search engines.

At the time of SMART, computing resources were expensive. A single run of 225
queries on the 1,400-document Cranfield collection in 1973 took 11 minutes and cost

86 dollars—equivalent to a professor’s daily salary (Robertson, 2008a, page 443). Nor

were computers particularly convenient to use, as Lesk’s laborious 63-page 1966 man-

ual for the SMART system attests (Lesk, 1966). In 1962 Cleverdon cited as one of the

advantages of manual retrieval that it was so much faster than automatic methods: “it

has been a matter of surprise to find the time delay which many organizations appear

willing to tolerate for the doubtful benefit of using some form of mechanical retrieval”

(Cleverdon, 1962, page 88). Nevertheless, SMART demonstrated the possibilities of

fully automated evaluation: precisely repeatable experiments, formal control over ex-

perimental variables, and the automation of the experimental process itself. Salton de-

scribes the SMART system’s functionality as being “not only for language analysis and

retrieval, but also for the evaluation of search effectiveness by processing each search

request in several different ways while comparing the results obtained in each case”

(Salton, 1966a, page 1). Of course, to realize the potential of a fully-automated evalu-

ation system, one needed an evaluation methodology that could be fully automated—

and this was precisely what was provided by the test collection model developed at

Cranfield and adopted by SMART.

Not just the methods and goals, but also the publications of the SMART project

feel modern compared to those of Cranfield. Cranfield produced large, multi-volume

reports; books, essentially. The SMART publications, however, followed the scien-

tific paper model: shorter, self-contained papers, with the common pattern of intro-

duction, literature review, theoretical exposition, and experimental evaluation (Salton,

1966b, 1971). And, of course, the experimental evaluation used was the test collection

methodology that SMART developed.

The SMART project also parallelled Cranfield in its confrontation of theoretical

dogma with empirical fact. Whereas for Cranfield the dogma was the information

science one of classificatory indexing, for SMART the presumptions came mostly from

the field of linguistics. As Salton (1981, pages 317–318) later described it:
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Figure 2.2: Standard syntax parse trees from SMART, 1966. These trees allowed

the user to specify simple syntax parsing and matching in indexed documents. The

asterisked node is the matched concept. Solid lines indicate direct dependence, dashed

indirect. Labels in brackets mark parts of speech; for instance, “(V)” is a verb, “(Ø)”

an object, “(5)” an object clause. The user was also able to specify their own syntax

parse trees. (Reproduced from Lesk (1966, page 47).)
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Thus linguists led the way by pointing out that a number of linguistic

processes were ‘essential’ for the generation of effective content iden-

tifiers characterizing natural language texts. Among the linguistic tech-

niques of interest, the following were considered to be of greatest impor-

tance: (a) The use of hierarchical term arrangements . . . (b) The use of

synonym dictionaries, or thesauri . . . (c) The utilization of syntactic analy-

sis . . . (d) The use of semantic analysis.

The SMART system was developed to incorporate these advanced linguistic features—

some of them can be seen in Figure 2.2—and the early SMART experiments set out

to test how useful these features were. Contrary to expectations, they found that such

linguistic devices did not raise performance over that achieved with simple natural

language terms (Salton, 1981). As with Cranfield, this was at first taken to indicate a

flaw with the system or experimental design, so strong was the prior presumption that

linguistic devices had to improve retrieval effectiveness. But the results of Cranfield

and of SMART, arrived at by such different mechanisms, helped confirm each other,

and were further confirmed by later experiments. The SMART experiments are another

example of empiricism trumping theory.

The SMART project continued for three and a half decades, under the stewardship

of Gerald Salton, Chris Buckley, and collaborators. Alumni of the project went on

to play important roles in the TREC effort, in academic research, and in the develop-

ment of commercial web search engines. The legacy of Cyril Cleverdon also led to a

strong tradition of IR research in the United Kingdom, with foundational work being

done in document similarity measurement, in retrieval theory, and in the design of test

collections, by figures such as Karen Spärck-Jones, Steve Robertson, and Keith van

Rijsbergen. These and other early efforts led to the development of the discipline of

information retrieval, and the establishment internationally of researchers and research

centres too numerous to name here.

2.1.3 Experimentalism and empiricism in IR

Cranfield, SMART, and other early projects laid the foundations that have determined

the structure of the field of information retrieval. They did this in two ways. First,

they established an influential experimental methodology, of a fixed test collection

containing static relevance judgements, a set-up ideally suited to automated retrieval

experiments. Second, they were exemplars of empirical caution against theoretical

presumption, through their important, negative results. Cranfield and SMART proved

that a series of ideas the theoreticians asserted must work in fact didn’t, and that the

simple methods the theoreticians assumed were insufficient actually sufficed.

As it happens, information retrieval technology has not changed greatly in its ap-

proach since these early days, at least not on traditional text collections; simple term

indexing as validated by Cranfield and statistical models as developed by SMART are

still the mainstay of automatic retrieval technology, and successful elaborations of them

have been few in number and only marginal in effect (Spärck Jones, 2000). There has

also been, to the frustration of some, a failure to develop information retrieval as a

predictive and explanatory science, rather than one that is merely descriptive (Belkin,

1981; Robertson, 2009). This narrowness in the field’s scientific vision can in part be

traced back to the results of Cranfield and SMART: having instrumented a series of

theoretically-proposed techniques in a way that they could be manipulated as experi-

mental variables, the studies found that in fact the techniques did not work as theory



CHAPTER 2. HISTORICAL BACKGROUND 19

said they should. Since then, many experimenters have tended to view the retrieval

system as a black box: input goes in, results come out, the performance is measured,

but, often, no serious attempt is made to predict the system’s behaviour beforehand or

explain it after (Robertson and Hancock-Beaulieu, 1992). The black box model itself

is an example of trenchant empiricism.

2.2 The origins and influence of TREC

Having described the beginnings of IR evaluation in the Cranfield tests and the early

years of the SMART project, it would be all too easy for a historical narrative to jump

forward a quarter century to the foundation of the TREC effort in 1992. The annual

TREC experiments and the large-scale test collections they produce have come to dom-

inate the IR evaluation landscape, leaving the preceding decades in an obscure shade.

The TREC organizers themselves explicitly link their project back to Cranfield, in-

troducing the phrase “the Cranfield paradigm” into widespread usage to describe the

methodology used at TREC (Voorhees, 2002), and noting the evaluation efforts of the

intervening years mostly for what, methodologically, they failed to achieve (Harman,

1992b). In terms of the goals of TREC, there had indeed been little progress made over

the previous two decades. But at the same time, to understand both the achievements

and the limitations of TREC and the view of IR evaluation that it embodies, we need

to understand what happened in these evaluative middle ages.

2.2.1 Evaluation’s middle years

The first Cranfield experiments inspired a range of other investigations into index lan-

guages and devices during the 1960s, of variable quality and tending to come either to

similar conclusions as Cranfield or to no reliable conclusions at all. Due largely to the

example of Cranfield’s meticulous attention to detail, as well as to the subsequent avail-

ability of the Cranfield collection, the methodological quality of experiments improved

during the 1970s (Spärck Jones, 1981a). The SMART project and the increasing acces-

sibility of computing resources also inspired work on statistical models and automated

retrieval, including ongoing work at SMART itself (Salton, 1981).

Despite these developments, in 1975 Spärck Jones and van Rijsbergen character-

ized the work to date as being only “pilot studies” (Spärck Jones and van Rijsbergen,

1975), and in 1981 Spärck Jones remarked that “the most striking feature of the test

history of the past two decades is its lack of consolidation” (Spärck Jones, 1981a,

page 245). This failure to consolidate research findings was ascribed to inconsis-

tency in method, the absence of a common experimental framework, and the expense

of conducting large experiments. There was a strong inclination to re-use collec-

tions that others had formed, with the Cranfield collection being particularly popular

(Spärck Jones and van Rijsbergen, 1976); but these collections had been created for

particular purposes, were small, and were of variable quality.

As a solution to methodological failures of early experiments and the resultant lack

of standardization, in 1975 Sparck Jones and van Risjbergen proposed the formation of

an “ideal” test collection (or, to be precise, collections) (Spärck Jones and van Rijsbergen,

1975). There were several criteria that they laid out for such a collection. One of these

was scale: it needed 10,000 to 30,000 documents, and it needed a few hundred queries.

At the time, many experiments were being carried out with as little as a few hun-

dred documents and a few dozen queries (Spärck Jones and van Rijsbergen, 1975, Ap-
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pendix B). A careful mixture of homogeneity and heterogeneity was stressed, to allow

for the control and manipulation of experimental variables such as document content

and authorship. Costing of the project was incomplete and varied depending upon the

assumptions made (whether documents could be purchased in electronic form from an

operational system, for instance, or whether they would have to be typed in), but total

costs for collection construction on pessimal assumptions (ignoring maintenance) were

estimated to be as high as $US 200,000; close perhaps to $US 800,000 today. Perhaps

because of the price tag, the “ideal” test collection was not formed—or at least, some

would say, not until TREC (Harman, 2005a).

While the 1970s saw some improvement in methodology, despite the failure of

the “ideal” collection proposal, it did not see any great growth in the number of ex-

periments performed. Spärck Jones commented in 1981 that there were as many re-

trieval tests performed in the decade before 1970 as there were in the decade after

(Spärck Jones, 1981a, page 245), and that in the latter 1970s “there has been a notice-

able decline in the number of laboratory experiments” (Spärck Jones, 1981a, page 230).

There were an increasing number of operational, proprietary retrieval services, and the

success of these services gave the impression that the information retrieval problem

had been solved (Spärck Jones, 1981a, page 230). Ironically, at the same time, these

services were not adopting the retrieval techniques being developed by the research

community, such as statistical matching, ranked output, and relevance feedback, but

were sticking with older technologies such as Boolean retrieval carried out by trained

searchers (Salton, 1981). The failure of industry in the 1970s and 1980s to adopt ideas

developed in research led Salton to characterize these as his “lean decades” (Saracevic,

1995). There was also a belief among some researchers that automatic retrieval tech-

nology had reached a plateau, and that the batch mode of system evaluation using

pre-built test collections was losing its relevance with the development of interactive,

online systems (Oddy, 1981).

In a reaction against traditional batch-mode evaluation, the 1980s saw increasing

interest in alternative evaluation modes, particularly those focused on user behaviour

and interactive systems (Saracevic et al., 1988). In Jean Tague’s 1981 essay, “The prag-

matics of information retrieval experimentation”, she makes frequent reference to the

example and methods of Cranfield (Tague, 1981); but when she came to revisit the

topic in 1992, she observed that a “paradigmatic shift has occurred in the research

front, to user-centred from system-centred models” (Tague-Sutcliffe, 1992, page 467).

The Okapi project was carrying out user experiments on an operational, interactive re-

trieval system installed in a working library, complete with keystroke logging and user

interviews (Robertson and Thompson, 1990). These experiments inspired Robertson

and Hancock-Beaulieu to call for a move from experiments based on test collections to

experiments centred on evaluation facilities (Robertson and Hancock-Beaulieu, 1992).

Of course, work was still being performed using what we might now term the “old”

test collection model, not least as part of the ongoing SMART project. But even here,

evidence of the atrophy of the model can be seen in the age of the test collections em-

ployed. Take, for instance, the six test collections used in Salton and Buckley (1990),

(Table 2.1). Of these, the most recent was formed in 1979, more than a decade ear-

lier; most predate 1975; and the earliest is the original Cranfield collection from 25

years before. Researchers working on batch-mode automatic retrieval in 1990 were

substantially still using the same test collections whose inadequacy Sparck Jones and

van Rijsbergen had bemoaned fifteen years earlier in 1975.

The age of the collections being employed in 1990 was not the most glaring prob-

lem with them, though. Rather, it was their size. As can be seen from Table 2.1,
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Collection Documents Queries Year

Cranfield 1398 225 1966

INSPEC 12684 84 1970

NPL 11429 100 1970

Medlars 1033 30 1973

CISI 1460 112 1977

CACM 3204 64 1979

Table 2.1: Size and year of formation (or first description) of collections being used by

the SMART project in 1990 (Salton and Buckley, 1990). Collection dates are derived

from Fox (1983) and Spärck Jones and van Rijsbergen (1975).

the SMART project was working with collections of between a thousand and twelve

thousand documents. Even in 1981, when operational systems were indexing millions

of records (Salton, 1981), this scale of collection had been regarded as inadequate

(Oddy, 1981).1 The small scale of the test collections being used experimentally was

one of the major reasons operational systems gave for viewing laboratory research re-

sults with scepticism, and for not adopting them in practice (Salton, 1981; Ledwith,

1992). As well as being small, the existing collections were limited in the breadth of

their content. The vast majority of them—including all of those listed in Table 2.1—

consisted of scientific papers (Robertson, 1981). Moreover, these collections predom-

inantly (though not entirely) contained not the full paper text, but titles and abstracts

alone (Spärck Jones and van Rijsbergen, 1976).

2.2.2 The Text REtrieval Conference

The TREC effort, founded in 1992 and continuing to the present, took as its prime mo-

tivation the need to create realistically-sized collections, and to consolidate and extend

research in retrieval technology through the use of shared, high-quality experimental

data and standard evaluation techniques (Prange, 1996; Harman, 1992b). The effort

is hosted by the National Institute of Standards and Technology (NIST), a US gov-

ernment agency. The first TREC test collection was taken from the slightly earlier

TIPSTER effort, launched in 1989 with DARPA funding to advance the state of the

art in document detection and information retrieval (Harman, 1992a). The TIPSTER

corpus contained around 750,000 documents, an almost hundredfold increase over ex-

isting corpora. Additionally, whereas previous collections normally held only paper

abstracts, the TIPSTER corpus was mostly full text, making up 2 GB of text in total.

The documents were drawn from several different sources; the majority were newswire

items, but there were also magazine articles, parliamentary records, and scientific ab-

stracts (Harman, 1992b).

The TREC effort represented an innovation not just in collection size, but also in

experimental method. It was a large-scale, collaborative, and comparative experimen-

tal exercise, open to anyone wishing to take part, with dozens of international research

teams participating (Voorhees and Harman, 2005a). Participants were provided with

1Salton’s estimate is surprisingly high; but since MEDLARS was already indexing over 150,000

citations a year in 1965, and since MEDLINE, brought online in 1971, inherited the MEDLARS
database from 1966 onwards, Salton’s figure seems reasonable, at least in the case of the MEDLINE
database. See http://www.nlm.nih.gov/databases/databases_oldmedline.html (last down-
loaded 21st September, 2009).

http://www.nlm.nih.gov/databases/databases_oldmedline.html
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Figure 2.3: TREC assessors at work for TREC 7 in 1998. Standing is Ellen

Voorhees, the chief TREC co-ordinator. Document relevance assessment for the

main TREC collections was carried out at NIST by retired intelligence asses-

sors. A pool of candidate documents is formed from the submitted runs of

the participating systems. Each of these documents has to be assessed for rel-

evance to the query it was returned for. As many as 2,000 documents had to

be assessed for relevance for each query in the collection. (Image taken from

http://www.itl.nist.gov/iad/photos/assessors.html; reproduced with per-

mission.)

the document corpus and a set of topics to run against it; the runs for each topic were

then submitted to TREC for assessment. Evaluation was based on the assessed rele-

vance of documents to queries, but here TREC made two crucial contributions. First,

the resources available to TREC allowed for large scale relevance assessment to be per-

formed (see Figure 2.3); the expense of such assessment had done much to constrain

the size of earlier collections (Salton, 1981). And second, the top-ranked documents

returned by participating systems were pooled to create the set of documents for rel-

evance assessment, as suggested in the 1975 proposal for an “ideal” test collection

(Spärck Jones and van Rijsbergen, 1975). It was argued that by merging such a diverse

range of inputs, the set of documents most likely to be relevant to each query would

be identified. Thus, exhaustive assessment of the full collection, beyond the resources

even of the TREC effort, could be avoided, while (it was hoped) still achieving a tol-

erably complete coverage of the relevance set, allowing the collection to be re-used by

researchers in subsequent experiments (Zobel, 1998).

The scale of its collections and the breadth of its participation made TREC the test

collection model writ large. Not surprisingly, information retrieval experiment was

dominated for more than a decade by the TREC effort, the experimental data it pro-

vided, and the experimental methods it pursued. The standardization of methodology

allowed for discoveries in retrieval technology to be consolidated, and the large scale

and high quality of the collections rendered the demonstration of those discoveries

http://www.itl.nist.gov/iad/photos/assessors.html
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credible. TREC provided compelling confirmation of earlier findings in information

retrieval: that simple statistical methods performed at least as well as complex linguis-

tic ones, for instance, and that query expansion and statistical phrase detection offered

real but only slight improvements over plain weighted term matching (Spärck Jones,

2000). And, finally, TREC provided experimental data—lots of it. Hundreds of pa-

pers have used TREC test collections (Armstrong, Moffat, Webber, and Zobel, 2009a);

a search on Google Scholar for the phrase “TREC data” produces over 1,400 refer-

ences at the time of writing. In addition to the test collections themselves, TREC has

made large amounts of a novel kind of data available: namely, the document rankings

or runsets submitted by participating groups. These runsets have provided the material

for research on evaluation itself, and have inspired a large volume of such work over

the past decade, of which this thesis is part.

The TREC effort is now in its 19th year. It began with a single collection of pre-

dominantly newswire data, and two retrieval tasks. The first of these was that of ad hoc

retrieval for once-off queries; the second was routing or classification of documents

based upon an initial set marked as relevant. The inaugural experiment saw the partici-

pation of twenty-five different research groups, already a large number. As the value of

a collaborative experimental environment proved itself, new experimental tracks and

tasks were added, and the number of participating groups grew. In 2005, some 117

different research groups participated in TREC, across seven different tracks, includ-

ing genomics, question answering, and spam detection (Voorhees, 2005a). Participant

numbers have declined slightly in subsequent years, but this is at least in part due to

the emergence of regional and specialist collaborative experiments. Inspired by TREC,

these collaborations include NTCIR, founded in 1999, which focuses on Asian lan-

guage and cross-language retrieval (Kando, 1999); the Cross-Language Evaluation Fo-

rum (CLEF), started in 2000, which focuses on European language and cross-language

retrieval (Peters, 2000); and the Initiative for the Evaluation of XML Retrieval (INEX),

begun in 2002 (Gövert and Kazai, 2002).2

2.2.3 TREC and ad hoc retrieval

The primary initial task in TREC was ad hoc retrieval: retrieving documents, based on

textual evidence alone, for once-off user queries, without other contextual information.

Ad-hoc retrieval has long been the core task in information retrieval, and evaluation

methods directed towards it are the main focus of this thesis. One of the main initial re-

sults of TREC was to confirm earlier findings in ad hoc retrieval, most particularly the

viability of statistical retrieval techniques on large collections. It is less clear, though,

what further improvements to ad hoc technology the TREC effort enabled. Organiz-

ers (Voorhees and Harman, 2000) and participants (Buckley et al., 1996; Robertson,

2008a) assert that the TREC regime led to significant improvements in retrieval effec-

tiveness, at least in the early years of the effort; but how long this improvement continue

for is uncertain. Aside from the fine-tuning of similarity metrics and advances in engi-

neering, the main source of improvement in early TREC results seems to have been the

introduction of a document length normalization component to the long-standing tf-idf

(term frequency, inverse document frequency) model. The need for length normaliza-

tion had not been apparent with earlier test collections, simply because they consisted

2NTCIR originally stood for “NACSIS Test Collection for Information Retrieval”, then “NII Test Col-
lection for Information Retrieval”, and most recently “NII/NICT Testbeds and Community for Information
access Research”, after the successive sponsoring organizations, all of them Japanese government research
institutions.
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of abstracts of similar lengths (Spärck Jones, 2000, page 62). Document length normal-

ization was key to the successful Pivoted Cosine and BM25 retrieval formulae. Once

this adjustment had been made, it is open to question whether the TREC effort enabled

further substantive improvements in ad hoc retrieval technology, at least as measured

by the TREC collections themselves. We examine this issue in Chapter 8.

It is possible to see TREC as finally fulfilling the 1975 blueprint of an “ideal”

collection. Certainly, the TREC collections more than met Sparck Jones and van Rijs-

bergen’s criterion for size of document corpus. There is, though, at least one significant

aspect in which TREC fell short of the “ideal” requirements, and that is in the num-

ber of queries. The 1975 report stated (in its highly abbreviated language) that “re

requests: < 75 are of no real value; 250 are minimally acceptable; > 1,000 are needed
for some purposes” (Spärck Jones and van Rijsbergen, 1975, page 64). However, the

number of queries produced for each year’s test collection at TREC was only 50, and
while queries accumulated from year to year, the document corpus frequently changed,

too. So while the TREC document corpora represented a hundred-fold increase on

the earlier collections reported in Table 2.1, the topic set sizes were a retrogression;

even the Cranfield collection contained 225 topics. Indeed, it was not until 2004 that

any TREC test collection contained the 250 queries deemed in 1975 to be “minimally

acceptable”, this threshold finally being achieved by the TREC 13 Robust test collec-

tion, which incorporated topics from TRECs 6, 7, 8, and 12. In a review of the first

half dozen iterations of TREC, Sparck Jones remarks that the query set size of 50 “is

not as large as is really desirable” (Spärck Jones, 2000, page 54), and the question of

whether the TREC query sets are adequate in size has been a recurrent one (Zobel,

1998; Voorhees and Buckley, 2002; Sanderson and Zobel, 2005). Most analysis of the

question has been post-hoc, looking at existing test collections and the runs made by

participating systems against them. In Chapter 5, we examine the issues involved in

trying to determine in advance how many queries are necessary to reliably demonstrate

a meaningful difference in effectiveness between two retrieval systems.

For all its achievements in standardizing methodology and increasing the scale of

experimental data, the influence of TREC on the practice of retrieval evaluation has not

been unequivocally positive. As we have seen, at the time of TREC’s founding, the

batch-mode test collection model of evaluation that it adopted was in decline, in favour

of more user-centric and interactive approaches. The greater interest in interactive

modes of evaluation was driven in part by the increased availability of online, interac-

tive retrieval systems; users were no longer forced to use batch retrieval services, so

why should researchers continue batch-mode evaluation? And the trend towards inter-

activity was about to accelerate with the arrival of the web. In some ways, then, while

TREC represented a leap forward in volume of data, it represented a step backwards

in breadth of experimental vision (Blair, 2002). The Okapi project team, for instance,

notes in their report for TREC 1 that the lack of interactivity and highly complex topic

specifications “does not at all represent the kind of retrieval activities for which Okapi

was designed” (Robertson et al., 1992). Nor should this remark be interpreted as sour

grapes: Okapi was one of the most successful participants in TREC. An attempt was

made to run an interactive track at TREC, but after numerous problems it was eventu-

ally abandoned. Proposals were put forward to increase the contextual realism of the

TREC experiments—for instance, by attempting to explicitly capture environmental

variables and user background—but they were not adopted (Spärck Jones, 2000). The

TREC effort proved not to be the appropriate forum for interactive and user-focused

studies (Robertson et al., 2000).

The TREC approach also prolonged the black-box model of evaluation, of purely
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descriptive experiments that reported what score a method achieved, rather than ex-

planatory or predictive glass-box experiments that looked inside the system to provide a

convincing theoretical model of information retrieval (Spärck Jones, 2000; Robertson,

2008a). And these failures of TREC in interactivity, user-focused study, and explana-

tory science were all the more significant because of TREC’s tremendous success

in providing tools and methods for batch-mode evaluation. TREC’s system-centric

success, and the dependable model of investigation and publication that it provided,

arguably has drawn research focus away from other, user-centric imperatives. As

Robertson (2008a) observes:

It is very much easier for (say) a PhD student in the field to work on math-

ematical models and ranking algorithms, using the TREC material in the

usual way and never questioning the validity of relevance judgements, than

to venture into the jungle of real users with real anomalous states of knowl-

edge.

The irony of quoting this passage in a thesis concerned with evaluation based on static

relevance judgments is not missed by the author. We return to the issue of TREC’s

restrictive influence in Chapter 8, where we find compelling evidence that the TREC

model and data has encouraged a publication culture that approves work that follows

the standard methodology, even if that work contributes little technological progress.

2.3 Information retrieval as a universal service

The TREC conferences began in 1992; their immediate predecessor, the TIPSTER

project, was instituted in 1990 (Harman, 1992a). Another event occurred between

those two years that was to change the direction of information retrieval as a whole even

more profoundly than TREC changed the direction of information retrieval evaluation.

In August of 1991, the first web site was put online at CERN. Over the next decade,

the web rapidly grew from a publishing tool for researchers to become the information

nexus of the digital age. The research community met the arrival of the web unusually

well resourced in the scale of experimental data available to it, thanks to TREC. This

was timely indeed: the final verification and consolidation of long-standing techniques

in the area came just in time for deployment in operational search engines, and tech-

nology and engineering experience developed in dealing with the large-scale TREC

collections prepared the way for handling the large and rapidly growing data volume

of the web. But research datasets were soon dwarfed in scale by the growth of the

web; and evaluation methods, too, came to be stretched by the particular demands of

web search. We now examine the impact that the emergence of the web has had on

information retrieval, and the challenges the web poses to retrieval evaluation.

2.3.1 The web and TREC

The nature of the web makes running information retrieval systems over it challenging,

but also vital. Traditional information repositories are generally curated, mostly homo-

geneous, either static or else accumulating new material without modifying or deleting

the old, and consistent in their level of reliability and trustworthiness. On the web,

pretty much anyone can publish pretty much anything. There is no consistent quality

control. Every style, format, and content imaginable is represented, as are all major

human languages and many formal ones besides. New content is added at a great rate,
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and old content is continually modified or deleted. And, as the commercial and social

importance of the web has grown, so too has the prevalence of attempts to consciously

distort information and mislead users and search services. Running an information re-

trieval service in this environment is enormously challenging. However, without search

engines, the web is for users unmanageable and largely inaccessible. Search engines

have become a universal service, as important in most people’s daily life as a traditional

retrieval service was for dedicated information workers of the past.

The web has propelled the development of new retrieval techniques. Link analy-

sis and the use of anchor text are the most obvious, but spam detection, page quality

assessment, URL analysis, and a multitude of other features have become important.

The web also, at last, drove the widespread operational adoption of some long-standing

research technologies. Free text queries, statistical similarity calculations, and result

ranking had been used in research systems since the 1960s, but at the end of the 1980s

operational systems were still restricted to Boolean retrieval using complex queries

composed by trained searchers (Salton, 1992), as indeed are some specialist retrieval

services today (such as medical or legal literature retrieval systems). Complex Boolean

retrieval was no longer workable on the web: search users lacked the training or pa-

tience even for the simplest Boolean operators, and answer sets were too large for

humans to process without the assistance of relevance ranking. Search engines were

finally forced to adopt technology demonstrated by researchers decades earlier.

The TREC effort adapted to the new demands of evaluating web search, but with

only partial success. The advent of the web found TREC heading in the wrong direc-

tion. Topics in TREC 1 and TREC 2 were long and sophisticated, and included high-

level concept, factor and definition fields, as illustrated in Figure 2.4 (Spärck Jones,

2000). We have seen that the Okapi project found themselves having to retrogress their

interactive, short-query system, developed in an operational setting, to TREC’s com-

plex query, batch-mode environment (Robertson et al., 1992). By TREC 4 in 1995,

the year that web search engines first appeared, TREC topics had been pared back to

simple, one-line queries, as can been see in Figure 2.5. The shortening was performed

to make the topics more similar to “what users normally submit to operational retrieval

systems” (Harman, 1995, page 5). Spärck Jones (2000, page 53) states that the opera-

tional systems particularly in mind were web search engines, though this is not stated

explicitly in that year’s overview paper. In any case, the document collection continued

to be newswire data. It was not until the Very Large Collection (VLC) track of TREC 7

in 1998 that a fully web-derived corpus was introduced (Hawking et al., 1998).

The VLC2 collection introduced at TREC 7 was ambitious in scale. The corpus

was a crawl of a substantial portion of the web, made by the Internet Archive in

1997. The crawl contained 100GB of data and almost 18 million web pages, mak-

ing it comparable in size to the indexed corpora of contemporary web search systems

(Hawking and Craswell, 2005, page 205), It was even possible to compare the retrieval

effectiveness of the submitted TREC systems on the static collection against that of

commercial search engines on the live web, using the collection’s qrels, with the re-

search systems coming out ahead, albeit on queries atypical of web search (Hawking et al.,

1998). The rapid growth in the web, however, soon left the corpus behind. By TREC

9 in 2000, the second year of the TREC Web track proper, the VLC2 collection was

only a thirtieth of the size of document sets indexed by commercial search engines

(Hawking, 2000). Though only three years old, it was already quite out of date as a

snapshot of the web. In 2003, its final year as the largest TREC collection, it was one

two-hundredth of web scale (Hawking and Craswell, 2005, page 206).

The challenge of performing public evaluation of web retrieval (as opposed to
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<top>

<head> Tipster Topic Description

<num> Number: 053

<dom> Domain: International Economics

<title > Topic: Leveraged Buyouts

<desc> Description:

Document mentions a leveraged buyout valued at or above

200 million dollars.

<smry> Summary:

Document mentions a leveraged buyout valued at or above

200 million dollars.

<narr> Narrative:

A relevant document will cite a leveraged buyout (LBO)

valued at or above 200 million dollars. The LBO may be at

any stage , e.g., considered , proposed , pending , a fact.

The company (being) taken private must be identified.

The offer may be expressed in dollars a share.

<con> Concept(s):

1. leveraged buyout , LBO

2. take private , go private

3. management -led leveraged buyout

<fac> Factor(s):

<price > Price: >= 200 million dollars

</fac>

<def> Definition(s):

Leveraged Buyout (LBO) - Takeover of a company using

borrowed funds , with the target company ’s assets serving

as security for the loans taken out by the acquiring

firm , which repays the loans out of the cash flow of the

acquired company or from the sale of the assets of the

acquired firm.

</top >

Figure 2.4: Sample topic from TREC 1. The topics have two labelling and eight

descriptive fields. The descriptive fields include: concepts, which provide suggested

search phrases; factors, which are logical statements that matching documents must

satisfy; and definitions of specialist terminology.
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<top>

<num> Number: 203

<desc> Description:

What is the economic impact of recycling tires?

</top>

Figure 2.5: Sample topic from TREC 4. By TREC 4, under the influence of opera-

tional retrieval practice, topics had been pared back to a single descriptive field, which

held the query itself. Subsequent TRECs restored the “Narrative” field, introduced the

“Title” field, and allowed the “Description” field to expand again. However, the clas-

sification fields of TREC 1 and 2 were not re-introduced, and participants increasingly

derived their queries solely from the short, keyword-rich “Title” fields.

evaluation with the resources, and within the confines, of a commercial search en-

gine lab) is not primarily that of collecting a corpus of web size. The effort involved

in crawling web-scale corpora is still within the capacity of the research community,

as is attested by the 426GB, 25 million document TREC Terabyte corpus released in

2004 (Clarke et al., 2004), or the billion-page ClueWeb collection, introduced to the

TREC Web Track in 2009 (Clarke et al., 2009). The problem, rather, is with the dy-

namism of the web, its rate of growth and change, and the increasing richness and com-

plexity of the information sources available in it. Static research collections quickly

become dated and unrepresentative. More significantly, there are important sources

of information on user search behaviour, such as query logs and click-through data,

which are not freely available to public research. Given these challenges, and given the

competition from well-resourced commercial search engine labs, it is an open question

whether public information retrieval research, and collaborative efforts like TREC, can

remain relevant to the whole retrieval task (at least as it is performed on the web), or

whether they will be relegated to work on specific sub-problems.

2.3.2 Evaluating web-scale search

Although not all search is web search, the web is the most prominent contemporary

search domain. Covering this domain poses many challenges to TREC-style evalua-

tion. A basic one is to the completeness of relevance assessments. Test collections are

designed to be reusable, and this re-usability depends on the set of relevance judge-

ments being tolerably comprehensive and unbiased (Zobel, 1998). Since exhaustive

relevance assessment is impractical, document selection is made by pooling system

runs (Harman, 2005a). As corpora grow in size, however, the coverage of the assess-

ment set becomes more questionable—particularly for the often under-specific short

queries typical of web search. Pools become filled with easily matched documents,

such as those rich in query keywords, and relevance sets created from such pools are

biased against innovative methods that go beyond keyword matching (Buckley et al.,

2007). As the expense of providing reusable assessments for each query is increas-

ing, so too is the number of queries needed to cover the diversity of web search. The

standard 50 queries of a TREC collection is arguably insufficient even for the homoge-

neous query and data sets of the Ad-Hoc newswire collections (Spärck Jones, 2000). It
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is certainly inadequate for the heterogeneous query and documents types of the web.

While the web challenges the test collection model for TREC participants, it breaks

it completely for operational systems. Evaluation is crucial to commercial web search

engines, and they devote considerable resources to it (Hawking and Craswell, 2005;

Huffman and Hochster, 2007). Before the web, operational information retrieval sys-

tems typically had a monopoly over the information source they were serving. Web

search engines, however, all work over the same data sources, making competition in-

tense, and quality of results crucial. Static, TREC-style collections are of limited value

in this environment. The operational corpus is rapidly growing and changing, not just

in content but in style. Keeping the testing corpus static creates a highly undesirable

bias in favour of old documents; on the other hand, allowing the corpus to grow soon

renders static relevance sets incomplete. The query stream is also continually changing,

and the test environment must reflect it, or else leave retrieval algorithms stale. And

in a setting of endlessly repeated system evaluation and tuning, the set of test queries

must be large and always changing, to avoid over-fitting.

Attempting, TREC-style, to create comprehensive relevance sets through deep as-

sessment is prohibitively expensive for query sets of operational scale, and in any case

is ultimately pointless if query and document sets are undergoing continual change.

And if evaluation reflects the tendency of web search users to only look a short way

down result lists, deep relevance assessment becomes redundant. Instead, testers are

necessarily driven to shallow evaluation over large query sets. Anecdotal evidence indi-

cates that commercial web search systems indeed perform system evaluation over sets

not of dozens of queries as in TREC, but of tens of thousands of queries; however, for

each query, they have not thousands of relevance assessments as in TREC, but a dozen

or fewer (Najork and Craswell, 2008). Such relevance sets are not naively reusable in

the original TREC manner, but nor is it economically feasible to throw them away after

each experiment. Instead, methods need to be found that allow for the reuse of shal-

low relevance assessment in a highly dynamic environment of changing documents,

queries, and systems. We propose one such method in Chapter 6.

The growth in data scale, and improvements in technology, have provoked interest

in applying machine learning and data mining technology to the web, interest which has

extended to system evaluation and enhancement as well. For instance, one of the most

popular areas of contemporary research interest is “learning to rank” (Trotman, 2005).

Here, rather than manually developing and tuning retrieval algorithms, search systems

use automated methods to select the mix of features and feature weightings used to pre-

dict document relevance and thus estimate the optimal document ranking. The nature

of the web is, again, a major driver behind this interest: it presents a far greater range

of possible features than traditional collections, and its dynamic nature requires the

constant readjustment and redevelopment of retrieval methods. While learning to rank

still requires relevance assessments to train from, one can also anticipate the growth of

a range of unsupervised methods, in which retrieval effectiveness is not directly mea-

sured, but rather the degree of similarity between different rankings is of interest. For

instance, an operational search provider might be interested in tracking the speed and

nature of a rival’s changes to their ranking algorithm. Such ranking comparisons have

particular features (top-weightedness, disjointness) that make traditional rank similar-

ity metrics unsuitable. And these features can be found not just in the document rank-

ings produced by search engines, but several other fields besides. We propose a metric

suitable for calculating similarity between rankings of this sort in Chapter 7.

As serious as the issues of scale in retrieval evaluation, are those of the adequacy

of the test collection model itself. The standard retrieval evaluation methodology is
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becoming increasingly unsatisfactory as a model of information access on the web.

Users search interactively, refining and adapting queries in response to intermediate

results and their developing understanding of their information need; but the standard

evaluation method only models batch retrieval. Users come to search engines with

a great variety of background states of knowledge, some of which could be captured

by search engines; but the standard model reduces the user to a query and a set of

independent document relevance assessments. There are many choices about how to

present search results, and indeed there are possible methods of information provision

quite different from the query–results model; but the standard test collection evaluation

model reduces each returned document to its relevance value, not even accounting

for basic presentation features such as document summaries. Many of the problems

with retrieval evaluation methods were apparent before both the web and TREC; the

failure of automated batch evaluation to capture the interactive user experience has

been widely appreciated since the late 1980s at least. However, the added possibilities

of web retrieval bring the inadequacies of system-centric, batch-mode evaluation into

even sharper focus. Meanwhile, the TREC effort has served to reinforce the rigidity of

the traditional evaluation model, by providing large-scale, high-quality experimental

datasets that are for the most part only usable within the traditional model—and at the

same time setting the bar higher for those wishing to undertake research outside this

model and unable to access voluminous experimental data. Some of the effects of this

influence are examined in Chapter 8.

These are significant challenges for the future direction of evaluation in information

retrieval. Nevertheless, the resilience of the system-centric evaluation model should not

be ignored. Its essential elements appear to have been adopted by operational systems

for their internal testing: creation or sampling of a set of test queries, assessment of

document–query relevance (or at least utility), marking up of document rankings for

relevance to test queries, and scoring of the runs accordingly. The reasons for retaining

this evaluation model, for all its artificiality, are clear: it is robust, repeatable, readily

automated, and at least partially reusable. Other, more user-centric, and probably more

expensive evaluation methods are required in addition to the system-centric model, but

they are unlikely to replace it, at least for the time being. As such, it is important that

the system-centric model continues to develop its reliability, sensitivity, efficiency, and,

within the limitations of its basic model, its flexibility. It is to the furthering of these

qualities that the main contributions of this thesis are aimed.

2.3.3 Extending retrieval evaluation’s legacy

Information retrieval has a fifty-year history as an independent discipline. From its

beginning in the Cranfield experiments and through its elaboration by the long-running

SMART project, the discipline has been marked by a strong empirical tradition. The

experimental methodology developed at Cranfield has proven resilient and enduring:

system-centric evaluation using a test collection of documents, queries, and relevance

assessments. It was with the TREC effort, begun in 1992, that this methodology finally

came into its own; at last, test collections of sufficient scale were formed to consolidate

the discoveries of the previous decades and provide a firm basis for future work. Not

the least of the outcomes of TREC has been a keen attention to assessing and improving

the standard experimental methodology; and it is in this stream of work that the current

thesis can be located.

Meanwhile, the emergence of the web has taken information retrieval from being

the modest domain of research librarians and proprietary databases, to a universal ser-
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vice of everyday use; and, of course, a hugely lucrative business besides. The promi-

nence of web search has made effective evaluation all the more important, at the same

time that the peculiarities of web search have made it all the more difficult. Part of

the solution to this challenge lies in developing new evaluation methods, which is a

task we must leave to others; part, in extending existing methods to meet the new de-

mands, which is the task we undertake here. This chapter has reviewed the historical

background of our task; the next lays out its theoretical foundations.



Chapter 3

Technical background

The previous chapter described the historical development of retrieval evaluation by

test collection, from the Cranfield experiments to the TREC effort. We now examine

the assumptions, applications, and challenges of this mode of evaluation. Test col-

lection evaluation is system-centric, replacing the user with an abstract model of the

retrieval process. This model, and its embodiment in the test collection method, is pre-

sented in Section 3.1. Retrieval effectiveness is quantified using an evaluation metric;

common metrics and metric components are described in Section 3.2. Generalizing a

system’s effectiveness beyond a particular collection requires the use of statistical tools,

examined in Section 3.3. The practical challenges involved in test collection formation

and the interpretation of results are discussed in Section 3.4. Finally, the TREC test

collections and runsets, which form our main data set, are introduced in Section 3.5.

3.1 Mode, model, method

Test collections enable a system-centric mode of evaluation, based upon a simple model

of information retrieval. Under this model, a retrieval system is effective if it returns

documents that are relevant to the user’s information need. The test collection supports

the automated evaluation of relevance-based effectiveness, through its three compo-

nents: documents; statements of information needs called topics; and judgments as to

which documents are relevant to which topics. The mode, model, and method of test

collection evaluation is discussed below.

3.1.1 User and system studies

Evaluation experiments can be performed in any of several modes. For instance, exper-

iments can be observational, watching and interpreting search behaviour in person or

through query logs; or they can be operational, modifying a working system and ob-

serving how usage changes. But it is two other experimental modes, and the distinction

between them, that are most important to understanding the test collection method: the

user- and system-centric modes of experiment.

The success of a retrieval system is defined by the user’s satisfaction or utility.

Therefore, it seems most natural that retrieval experiments directly involve users, both

in searching the system, and in assessing its results. Bringing users into a laboratory

setting allows a range of manipulations and observations to be made, from role-playing

32
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retrieval scenarios to monitoring user attention with eyetracking devices. Evaluation

can by questionnaire, or by setting the user a task and seeing how effectively they

perform it. Such studies offer a rich range of experimental opportunities. The problem

is the cost: user studies are expensive and time consuming. Also, the investment in one

study cannot be reused in subsequent experiments; each time a change in the retrieval

method is made, even if it is just the tuning of a parameter, the user study must be

repeated. And the experimental results cannot be precisely replicated: redoing the

same study under the same conditions but with different users, or even the same users

at a different time, can potentially lead to different results (Voorhees, 2008).

Re-usability of assessment effort, and replicability of results, are the prime mo-

tivations for the system-centric mode of evaluation, embodied in the test collection.

System-centric experiments require no direct user involvement, allowing them to be

automated and precisely reproduced. Creating the test collection is no less expen-

sive than performing an equivalent user experiment; but, once created, the collection

can be reused unchanged, making further experiments much less costly. The bene-

fits of automation, replicability, and reuse, have made system-centric evaluation the

predominant experimental mode—at the expense, some would say, of the realism and

richness of user-centric evaluation (Robertson, 2008a). The challenge in implementing

the system-centric mode is that the assessment of retrieval effectiveness still relies on

human judgment, so some way must be found to capture this judgment in a reusable

way. The first step is to develop a model of the retrieval process, from which the role

of the user can be abstracted.

3.1.2 Modelling information retrieval

The automated evaluation of a user activity requires a model of user behaviour and

perception, one that defines what effective system performance is. In the test collection

model, retrieval begins with a user’s information need. The need is expressed to the sys-

tem as a query, to which the system responds with a ranked list of documents or ranking

(refer back to Figure 1.2). The user examines some prefix of the ranking, looking for

documents that are relevant to their need. This model leads to the following proposi-

tion, a simplified version of the probability ranking principle (Maron and Kuhns, 1960;

Robertson, 1977):

Proposition 3.1 The function of an information retrieval system is to take a user’s

query, and return a list of documents that are relevant to that query, ranked by order of

probable relevance.

Proposition 3.1 leads to the following corollary:

Corollary 3.2 A retrieval system’s effectiveness should be evaluated based on the

number, proportion, and ranking of relevant documents it returns.

Proposition 3.1 and Corollary 3.2 define the topical relevance interpretation of infor-

mation retrieval. (Corollary 3.2 could be extended to consider each document’s degree

of relevance; in this thesis, though, as in much IR evaluation, documents will be as-

sumed either wholly relevant or wholly irrelevant.)

Several simplifications are made in the model described above. It assumes that rel-

evance (Maron and Kuhns, 1960; Mizzaro, 1997) can be measured as a topical match

between information need and document. The model is one of batch retrieval: there is

a single query, with a single result, and no possibility of query refinement. It is also a
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model solely of document retrieval: issues of information extraction and presentation

are not considered; nor is interface design or speed of response incorporated. Finally,

the model assumes independence of document utility: a document’s usefulness to the

user is independent of which other documents appear in the ranking. Simplistic though

they are, these assumptions are made because they greatly ease the evaluation of effec-

tiveness. Once a document has been assessed for relevance to a query, that assessment

can be reused, without having to consider interactions with other documents or previ-

ous searches. The model does not capture the full complexity of the retrieval process;

but it can be embodied in an efficient, repeatable experimental methodology.

3.1.3 The test collection methodology

The topical relevance model identifies three elements of the retrieval process: the user’s

information need; the set of documents from which the system attempts to satisfy the

need; and the assessed relevance of each document in the collection to that need. These

three elements are represented by the three component of the test collection: a set

of topics, each describing a different information need; a corpus of documents; and

assessments of which documents are relevant to which topics, for which the term qrels

has been coined. Relevance assessments may be graded, allowing a document to be,

say, partially or highly relevant to a topic, but (as mentioned above) binary relevance

will be assumed in this thesis.

A retrieval system is evaluated against a collection as follows. Each topic is for-

mulated as a query, generally by extracting topic fields, and the query is submitted to

the system. The system matches the query against the documents in the collection,

typically with the aid of an index it has built, using whatever retrieval algorithm it im-

plements, and returns a list of documents, ranked by decreasing estimated likelihood

(or degree) of relevance to the query. The qrels are consulted to determine which doc-

uments in the ranking are relevant to the topic, and the ranking is converted into an

ordered list of relevance values or a relevance vector. The process in illustrated in Fig-

ure 3.1. An evaluation metric is then used to score the relevance vector, as described

in Section 3.2, and the scores that the system achieves for each topic are aggregated,

normally as the arithmetic mean, to derive the system’s effectiveness score for the col-

lection. The combination of test collection with evaluation metric will be referred to

here as a test environment.

The methodology described above reduces the user to a query and a set of relevance

assessments, and the search result to a vector of binary values, to be further summarized

into a single score. The benefit of this simplification is that queries and assessments can

be captured in advance, and used without change or variability in repeated experiments

on different systems, with different retrieval parameters, at different times, and by dif-

ferent groups. The test collection therefore provides an automated toolset replicating

the essentially manual process of information search and result assessment.

3.2 Evaluation metrics

The raw output of a test collection evaluation is an ordered binary vector:

−→R = 〈r1, r2, . . .〉 , ri ∈ {0, 1}

for each topic in the collection, representing the relevances of the document ranking

returned by the system for that topic. In order to quantify the system’s performance,



CHAPTER 3. TECHNICAL BACKGROUND 35

Topic (Unused) Document id Rank Similarity score System id

405 Q0 FT943-10128 1 121.13205 ric8dnx

405 Q0 LA052890-0021 2 119.91743 ric8dnx

405 Q0 LA092489-0134 3 117.35849 ric8dnx

405 Q0 FT942-5468 4 110.26174 ric8dnx

405 Q0 FT944-864 5 106.15862 ric8dnx

405 Q0 FT922-11472 6 103.69264 ric8dnx

405 Q0 LA010889-0109 7 103.28536 ric8dnx

405 Q0 LA022689-0112 8 99.37935 ric8dnx

405 Q0 LA090889-0077 9 96.91350 ric8dnx

405 Q0 FT924-286 10 93.05222 ric8dnx

(a) Ranking

Topic (Unused) Document id Relevance

405 0 FT922-11472 1

405 0 FT924-286 0

405 0 FT942-5468 0

405 0 FT943-10128 1

405 0 FT944-864 0

405 0 LA010889-0109 0

405 0 LA022689-0112 1

405 0 LA052890-0021 1

405 0 LA090889-0077 0

405 0 LA092489-0134 0

(b) Qrels

〈1 1 0 0 0 1 0 1 0 0〉
(c) Relevance vector

Figure 3.1: TREC input file formats, and intermediate evaluation output: (a) document

ranking; (b) relevance judgments or qrels; and (c) resultant relevance vector. The first

ten documents returned by the system ric8dnx for Topic 405 in the TREC 8 AdHoc

collection are shown, along with the relevance assessments for the same ten documents.

the relevance vector is converted to a numeric score, using an evaluation metric, which

can be defined as follows:

Definition 3.3 An evaluation metric is a function that takes an ordered vector of rele-

vance values, and returns a single numeric score, summarizing those values.

This is a minimal definition. Many metrics also take as input the full set of relevant

documents, or at least the size of this set; a few metrics return a range or set of values;

and some metrics support graded relevance assessments. We now proceed to examine

how different metrics implement Definition 3.3.
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R

D

Figure 3.2: Overlapping division of document space D into documents that are re-

trieved by the system for an information need (F), and documents that are relevant to

that information need (R).

3.2.1 Precision and recall

Two fundamental concepts in retrieval evaluation are precision and recall. They are

defined as follows:

Definition 3.4 Precision is the proportion of returned documents that are relevant.

Definition 3.5 Recall is the proportion of relevant documents that are returned.

More formally, let R be the set of relevant documents, and F be the set of returned

(fetched) documents. Then

Precision =
|R ∩ F|
|F| (3.1)

Recall =
|R ∩ F|
|R| (3.2)

The relationship is illustrated in Figure 3.2. Stated informally, precision measures the

accuracy of a result, recall its completeness. The two are complementary, and there

is a natural tension between them. Full recall is trivially achieved by returning every

document in the collection, but then precision will be low; conversely, returning only

the documents most likely to be relevant boosts precision, but harms recall. In general,

one can trade off precision for recall and vice versa, but can only increase both by

improving the effectiveness of the retrieval system. The inverse relationship between

precision and recall was one of the important findings of the Cranfield experiments,

and, though initially questioned, is now generally accepted (Spärck Jones, 1981b).

Where the search result is an unordered set of documents, as in Boolean retrieval,

the interpretation of precision and recall is straightforward. The meaning of these mea-

sures is unclear, however, with ranked retrieval, since there is no single set of retrieved

documents, but rather a ranking over the document set. The simplest solution is to
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treat all documents above some cutoff depth k as an unordered result set, and calculate

precision at cutoff k (P@k):

P@k(r) =
1

k

k
∑

i=1

ri (3.3)

Recall at cutoff k can similarly be defined, provided the number of relevant documents

R = |R| is known:

R@k(r) =
1

R

k
∑

i=1

ri . (3.4)

Comparing Equations 3.3 and 3.4 shows that R@k(r) = P@k(r) × k/R; and, while

P@k is widely used (for instance as P@10), R@k is rarely employed.

Precision at cutoff k is simple to calculate, and the meaning of a given P@k score

is easy to interpret. The metric, though, is open to several objections, each of which

suggests an alternative form of metric. The first objection has historically been that

P@k does not measure recall. A ranking that returns four documents in the top ten

receives a precision at ten score of 0.4, regardless of the number of relevant documents

it failed to return. A second objection to P@k is that scores are not adjusted for topic

difficulty. A P@k score of 1, for instance, cannot be achieved whenR < k; conversely,
if R ≫ k, P@k scores close to 1 may become overly common. One response to this

problem is score normalization, described below. And a final objection to P@k is that

it is not sensitive to the rank at which relevant documents are returned, apart from the

cutoff k itself, whereas more emphasis should be placed on higher rankings, suggesting

that metrics should be rank-weighted.

There is a natural relationship between metrics that incorporate recall and those that

adjust for topic difficulty: the larger the number of relevant documents R, the easier

in general (though not always) that topic is. It will also be seen that the incorporation

of recall often results in metric top-weightedness as well. Nevertheless, for recall-

based metrics, the incorporation of recall is the central motivation in itself, while top-

weightedness and an adjustment for topic difficulty are side benefits.

3.2.2 Recall-based metrics

The traditional way to combine recall and precision as measures of ranked retrieval

is through a recall–precision graph, which measures precision at different levels of

recall (Tague, 1981). Some form of interpolation is generally applied; for instance,

setting precision at a given proportional recall level to the highest subsequent precision

(Buckley and Voorhees, 2005). Interpolation enforces what is otherwise the strong ten-

dency for precision to stay the same or fall as recall increases. Figure 3.3 gives a worked

example of an interpolated recall–precision curve, and illustrates why interpolation is

necessary to remove the erratic and jagged nature of the actual recall and precision val-

ues at each rank. Such interpolated recall–precision curves, while rich in information

on a single topic and system, are unwieldy to compare or even to cite; early papers

describing third-party recall–precision curves often descend to verbal descriptions of a

graph the author can see but the reader cannot (see, for instance, Spärck Jones (1981a,

pages 234–235)). In addition, recall–precision curves assume that the ranking includes

all, or at least the great majority of, relevant documents; with large contemporary col-

lections, this assumption is no longer realistic (Buckley and Voorhees, 2005).
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Rank

1 2 3 4 5 6 7 8 9 10

ri 1 0 0 1 1 0 0 0 1 0
R@i 0.25 0.25 0.25 0.5 0.75 0.75 0.75 0.75 1 1
P@i 1 0.5 0.33 0.5 0.6 0.5 0.43 0.38 0.44 0.4

(a) Actual recall-precision

Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision 1 1 1 0.6 0.6 0.6 0.6 0.6 0.44 0.44 0.44

(b) Eleven-point interpolated recall-precision
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(c) Recall–precision curve

Figure 3.3: Recall–precision calculations: (a) actual, and (b) eleven-point interpolated,

recall-precision for a sample ranking, and (c) the corresponding actual and interpolated

recall–precision curves. The bolded precision values in (a) are those that are inter-

polated as the precision values in (b). The total number of relevant documents R is

assumed to be 4.

Various ways of combining recall and precision into a single score have been pro-

posed. The most widely adopted of these is average precision or AP, calculated by

averaging the precision for every position in the ranking at which a relevant document

is returned; relevant documents not returned in the ranking by the cutoff depth are

assigned a precision of 0.1 The metric gives an approximation of the area under the

1The metric was initially called mean average precision or MAP, to distinguish it from the various ways
of “averaging precision” presented in the earlier literature. Average precision (AP) is, however, a more
logical name, and will be used throughout this thesis; if referring to the mean over a set of topics, we may
speak of “mean AP” (as of “mean P@10”), but we will not speak of “MAP”.
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Rank
Sum

1 2 3 4 5 6 7 8 9 10

ri 1 0 0 1 1 0 0 0 1 0
P@i 1 + 0.5 0.6 + 0.44 = 2.54

/R = 6

AP@10 = 0.42

Figure 3.4: Example average precision calculation. Evaluation is performed to depth

ten. The number of relevant documents R is assumed to be six, of which the system

has returned four within the ten documents that are in the ranking.

recall–precision curve. More formally, let k be the cutoff depth; then:

AP@k(r) =
1

R

k
∑

d=1

rd

∑d
i=1 ri
d

(3.5)

where the inner fraction calculates precision at each depth, and rd acts as an indicator

variable, only including precisions at depths that hold a relevant document. Figure 3.4

shows a sample calculation. Note that we have been careful in Equation 3.5 to include

the cutoff depth k in the notation for the metric. Frequently, the cutoff depth is not ex-

plicitly specified, especially when it is relatively deep. Practice at TREC is to evaluate

to depth 1,000; when we refer in later chapters to AP without specifying a cutoff depth,

the depth of 1,000 is assumed.

Average precision gives greater weight to higher-ranked relevant documents, since

they contribute to the precision at lower-ranked relevant documents, but not vice versa.

The exact weight, however, is determined not for a single document, but for a doc-

ument pair, and is not fixed for a given rank, but depends on R. Specifically, from

Equation 3.4, it can be seen that for a pair rd, rc of relevant documents, with c < d, the
weight is 1/(R · d). These entanglements make analysis and estimation of the metric

quite complex (Aslam et al., 2006; Carterette et al., 2006). Average precision adjusts

for topic difficulty, or at least for R; a score of 1 is always and only achievable by

returning the setR, in any order, at the head of the ranking. But the incorporation of R
requires that the number of relevant document be known or estimated, which is chal-

lenging for large collections (see Section 3.4). Some have also criticized recall-based

metrics like average precision as not reflecting user experience, arguing that a user’s

satisfaction with the results they see is not affected by how many relevant documents

have (unknown to the the user) not been returned (Cooper, 1973; Moffat and Zobel,

2008). The very concept of recall has also been questioned (Zobel et al., 2009). Nev-

ertheless, average precision has been the most widely used evaluation metric over the

past two decades, and therefore is employed in many of the experiments here.

One other recall-based metric deserves description, and that is precision atR docu-

ments (RPrec). As the name suggests, RPrec is a precision at cutoff metric, but instead

of having a fixed cutoff, the depth is set to R, and hences varies from topic to topic.

More formally:

RPrec(r) =
1

R

R
∑

i=1

ri (3.6)
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Rank

1 2 3 4 5 6 7 8 9 10

ri 1 0 0 1 1 0 0 0 1 0
w(i) 1.0 1.0 0.63 0.5 0.43 0.39 0.36 0.33 0.32 0.30

ri · w(i) 1.0 0 0 0.5 0.43 0 0 0 0.32 0

DCG@10(r) = 1.0 + 0.5 + 0.43 + 0.32 = 2.25

Figure 3.5: Example discounted cumulative gain calculation. Evaluation is performed

to depth ten. The b parameter is set to 2.

As with average precision, a precision at R score of 1 is achievable and only achiev-

able by returning the setR at the head of the ranking. Precision at R documents is not

rank-weighted, though. Despite this, and despite the metric’s simplicity, the correla-

tion between RPrec and average precision is remarkably close (Buckley and Voorhees,

2005; Carterette, 2009). A geometric explanation for this relationship is given by

Aslam and Yilmaz (2005).

3.2.3 Rank-weighted metrics

Another objection to P@k, beside its ignoring recall, is that it is not sensitive to the

rank at which relevant documents are returned. Retrieval systems aim to return doc-

uments by decreasing probability of relevance (Robertson, 1977), and users examine

results in rank order (Joachims et al., 2005); therefore, the higher the rank of a rele-

vant document, the greater should be the system’s score. Average precision achieves

rank-weightedness through the way it incorporates recall. It is, however, possible, and

perhaps preferable, to weight ranks explicitly, and orthogonally to other metric fea-

tures.

A family of rank-weighted metrics can be defined of the form:

RWM@k(r) =

k
∑

i=1

ri · w(i) (3.7)

where w(i) is the weight assigned to rank i. Here, ri, the relevance of the document

at rank i, can take on any range of values, which was one of the major motivations

behind the first such rank-weighted metric, DCG (described below); we will, however,

only be using binary relevance values in this thesis. The ease with which graded rele-

vance values are supported in rank-weighted metrics is a result of making rank weight-

ing orthogonal; incorporating graded relevance into recall-based metrics like average

precision is far more complicated (De Beer and Moens, 2006). Different metrics are

realized by choosing different weighting functions w. Precision at cutoff k can itself

be viewed as a member of this family, with w(i) = 1/k for i ≤ k, and 0 otherwise.

The first explicitly rank-weighted metric to be proposed was discounted cumulative

gain (DCG) (Järvelin and Kekäläinen, 2000, 2002). The metric sets out to calculate the

value of a ranked list to the user. Each relevant document represents a (possibly graded)

gain (G) in value. The further down the list a document occurs, the more its value to

the user is discounted (D), since the user is less likely to look at it. Finally, the total
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Rank

1 2 3 4 5 6 7 8 9 10

ri 1 0 0 1 1 0 0 0 1 0
w(i) · 103 200 160 128 102 082 066 052 042 034 027

ri · w(i) · 103 200 0 0 102 082 0 0 0 0 034

RBP(r) = 0.200 + 0.102 + 0.082 + 0.034 = 0.418

Figure 3.6: Example rank-biased precision calculation, with the persistence parameter

p set to 0.8. Evaluation is performed to depth ten. The RBP score at this depth gives a

lower bound on the RBP score achievable at greater, including infinite, depths.

value of the ranking to the user is cumulated (C) from the discounted individual gains.

These elements correspond precisely to the elements of the rank-weighted metric in

Equation 3.7: the gain is ri, the cumulation is the sum
∑

, and the discount is the

weighting functionw(i). The weighting function proposed by Järvelin and Kekäläinen,

tuned by the parameter b > 1, is:

wDCG(i) =

{

1/ logb(i) if i > b ;
1 otherwise

(3.8)

Järvelin and Kekäläinen suggest b = 2 as the default parameter choice. An example

calculation of DCG using Equation 3.8, with b = 2, is given in Figure 3.5. As with AP,
the cutoff depth of DCG is frequently not reported if it is particularly deep; again, the

TREC standard is evaluation to depth 1,000, and that will be followed in this thesis.

Under the original DCG weighting scheme given in Figure 3.5, all ranks up to

and including rank b receive the same weight; in particular, for b = 2, a ranking that

starts 〈0 1 ...〉 is scored as highly as a ranking that starts 〈1 0 ...〉. Moreover, the

equality (1/ logb c)/(1/ logb d) = logc d means that, aside from the flatness of initial

weights, the steepness of the decline in weights is the same, whatever value of b is cho-
sen. The minor and counter-intuitive influence of the choice of b in Equation 3.8, and

the complexity that the equation adds both in expression and analysis (Sakai, 2007a),

have led to an alternative formulation of the DCG weighting scheme:

wMSDCG(i) =
1

log2(i+ 1)
, (3.9)

sometimes informally referred to as “Microsoft DCG”, as it seems to have originated

from MS Research (Burges et al., 2005). Although the MS-DCG weighting scheme

has much to recommend it in simplicity and intuition, we will use the original DCG

weighting in this thesis, with b = 2, as it still appears to be the more widely used

variant in evaluation research.

Another rank-weighted metric is rank-biased precision (RBP) (Moffat and Zobel,

2008). Like DCG, RBP is based on a simple user model, in this case that of how users

peruse rankings. The central concept is the user’s persistence, modelled as a parameter

p, which is the probability that a user, having reached a given rank in the results, will

proceed to the next rank. The probability that a user will reach rank i is then pi−1; the

user is assumed always to look at the first rank. These probabilities form a geometric
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Figure 3.7: Rank weightings, of RBP with different p, and of DCG. Each point gives

the contribution that a document at that rank makes to the run’s score if that document

is (binary) relevant. Note the logarithmic y axis.

sequence, summing to 1/(1− p); multiplying by (1− p) makes the weights sum to 1.
Thus, the weighting function for RBP is:

wRBP(i; p) = (1− p)p(i−1) (3.10)

The parameter p is used to control the degree of top-weightedness of the metric; the

lower p is, the less persistent the user, and hence the greater the top-weighting. An

example working of RBP is given in Figure 3.6.

While RBP is a member of the family of rank-weighted metrics, its weighting func-

tion has the important feature that it is convergent, summing to 1, whereas DCG’s loga-
rithmic weights are divergent, their sum going to infinity as the ranking is extended in-

definitely. Thus, RBP scores are bounded in the range [0, 1] (provided relevance values
are also in this range), while DCG scores are unbounded. For an infinite ranking under

DCG, the weight of the tail always dominates the weight of the head, as suggested by

Figure 3.7. Therefore, DCG requires an explicit evaluation depth cutoff, whereas RBP

naturally converges, even if evaluation is carried out to an indefinite depth.

A particularly useful effect of RBP’s convergent weights is that a partial evaluation

sets bounds on a full one. Each rank has a fixed weight, so the residual uncertainty of

an evaluation is the sum of the rank weights of unassessed documents in the ranking.

The base RBP score is the score achieved on the assessed documents; the maximum is

the base plus the residual, representing the score that the system would achieve if all

unassessed documents turned out to be relevant. As more documents are assessed, the

residual is monotonically decreasing, the base monotonically non-decreasing, and the

maximum monotonically non-increasing. These features are especially helpful when,

as is generally the case, the qrels are incomplete, with many documents not assessed

for relevance, a situation discussed further in Section 3.4.

One other metric, rank-weighted but not a member of the RWM family, deserves

mention here, and that is reciprocal rank (RR). The reciprocal rank score for a ranking
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is the inverse of the rank of the most highly-ranked relevant document. More formally:

RR@k(r) =

{

1/(min{i : ri = 1}) if min{i : ri = 1} ≤ k
0 otherwise

(3.11)

The user model behind reciprocal rank is one in which the user scans the ranking from

the top, and stops when they find a relevant document. A probabilistic version of the

metric has been shown to correlate with user click behaviour (Chapelle et al., 2009).

Reciprocal rank is often used as a metric in retrieval tasks in which there is only one

relevant document, or at most a handful which are equivalent, such as the named page

and home page tasks of the TREC Web track (Hawking and Craswell, 2001).

3.2.4 Metric normalization

Evaluation metrics typically give scores in the range [0, 1], and it is at least aestheti-

cally desirable that newly-proposed metrics also follow this convention. An example

of a metric which does not is DCG. How scores should be distributed in the [0, 1] range
depends on how the metric is understood. If the metric attempts to directly quantify

some independent property of the result, such as user satisfaction, then scores are tied

to that property; users may find a result unsatisfactory even if no better result is achiev-

able for that topic. If, however, the metric is designed to measure system performance,

then it desirable that a full score of 1 be achievable for every topic. Precision-at-cutoff-
k, for instance, fails this requirement for topics having less than k relevant documents.

It is also desirable, though difficult to achieve, that metric scores are independent of

topic difficulty, because the score a system achieves on a topic should measure sys-

tem quality, not topic difficulty (see Moffat (2010) for a discussion of a number of

desirable—but not all simultaneously achievable—metric properties).

The most direct way to bound a metric in the range [0, 1] is to divide a system’s

score by the maximum score achievable on that topic. This technique will be referred

to here as normalization. The maximum score for a topic is found by forming an

ideal ranking, namely, one that places the most highly-relevant documents first, fol-

lowed by the next most-relevant documents, and so forth, with the irrelevant documents

last. For binary relevance, there are only two relevance classes to consider. The score

of the ideal ranking is calculated, and observed scores on the topic are normalized

by dividing them by the ideal, maximum score. Discounted cumulative gain, for in-

stance, can be normalized to produce normalized discounted cumulative gain or nDCG

(Järvelin and Kekäläinen, 2002); and indeed this is the more commonly used form of

the metric. If binary relevance is assumed, withR relevant documents for a query, then

the nDCG formula is:

nDCG@k(r) =

k
∑

i=1

ri · wDCG(i)

/min{k,R}
∑

i=1

wDCG(i) (3.12)

where wDCG(i) is the DCG rank weight, given in Equation 3.8; MS-DCG from Equa-

tion 3.9 (or indeed another weighting scheme) can be substituted instead. Note that the

numerator in Equation 3.12 is the DCG score of the observed ranking, while the de-

nominator is the DCG score of the ideal ranking. Average precision can also be defined

as a normalized metric: normalized sum of precisions (SP) (Yilmaz and Aslam, 2006).

Sum of precisions is defined as:

SP@k(r) =

k
∑

d=1

rd

∑d
i=1 ri
d

. (3.13)
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Figure 3.8: Per-topic distributions of AP scores for the systems participating in the

TREC 8 Ad-Hoc Track, on all 50 topics in the track’s collection. Each column repre-

sents a topic, ordered by the median AP score. The solid line is the median AP score

achieved by the set of systems on that topic; box edges gives quartiles; whiskers extend

to the outermost point within 1.5 times the interquartile range; dots show outliers.

An ideal ranking places all R relevant documents at the top, achieving an SP score of

R, assuming that R ≤ k. Therefore, normalized sum of precisions or nSP is SP(r)/R;

and comparing Equations 3.13 and 3.5 shows that nSP@k(r) = AP@k(r). Thus,

recall-based metrics incorporate a form of normalization; but making normalization a

separate, orthogonal component results in greater flexibility in metric construction.

A perfect score is always achievable under a normalized metric, by returning an

ideal ranking—although the correct treatment of topics that have no relevant documents

is ambiguous (Moffat, 2010). Normalization is also an approach to making scores

independent of topic difficulty, in so far as difficulty is measured by the number of

relevant documents, R. On the other hand, normalization requires a knowledge or

estimate of R, as with recall-based metrics. Also, topic difficulty depends on more

than the number of relevant documents alone, as can be seen from Figure 3.8: even

though average precision is a normalized metric, the distribution of AP scores differs

greatly between topics. We return to making scores independent of topic difficulty in

Chapter 4, where we propose a more reliable method; namely, to standardize scores by

the results that reference systems achieve on each topic.

3.2.5 Metric meta-evaluation

Several evaluation metrics have been discussed above; many more are described in

the literature. How are we to choose between them? What criteria should be used to

evaluate evaluation metrics?

A natural first question is, does choice of metric matter? Do different metrics give

noticeably different results? Table 3.1 compares system rankings under different met-

rics on one TREC experiment. The measure is Kendall’s τ , which is described in Sec-
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RBP.95 nDCG P@10 RR

AP 0.81 0.88 0.74 0.52

RBP.95 0.79 0.87 0.61

nDCG 0.75 0.54

P@10 0.65

Table 3.1: Correlation between different metrics. The Kendall’s τ between TREC 8

AdHoc track system rankings under different metrics is shown. The 27 systems which

came in the bottom quartile for every metric are excluded, leaving 102 systems in the

comparison.

System Ranking RR AP

A 〈10000 00000〉 1.0 0.11
B 〈01111 11111〉 0.5 0.79

Figure 3.9: Example document rankings and their RR and AP scores. The number of

relevant documents R is assumed to be 9.

tion 3.3.6. One rule of thumb is that a τ above 0.9 indicates that system rankings are

effectively equivalent (Voorhees, 2001). By this rule, no two of the metrics reported

give equivalent rankings. The choice of metric is therefore of practical significance,

and we proceed to consider several proposed criteria for making this choice.

Correlation with user experience

It was observed in Section 3.1 that the test collection method is an abstraction of the

user search experience. This suggests that the best metric is the one that correlates

most closely with user satisfaction or utility. The results of overall comparisons be-

tween metric scores and user experience have, however, been mixed. Some have found

a reasonable correlation (Huffman and Hochster, 2007); others have failed to detect

one except in extreme cases (Turpin and Scholer, 2006); and others still have had am-

biguous results (Al-Maskari et al., 2007). As it has proved less than straightforward

to detect correlations between any metric and user experience, it would be even more

demanding to discriminate metrics by their correlation. There has, though, been some

promising work with click-through data, which, though difficult to interpret, is (for

operational systems) voluminous (Chapelle et al., 2009; Zhang et al., 2010).

Metric predictivity

Even if the correlation between metric and user experience could be accurately mea-

sured, it does not necessarily follow that the metric with the strongest correlation is

the most reliable one. We have argued this case in Webber, Moffat, Zobel, and Sakai

(2008c); space limitations allow only a brief summary here. When evaluating a system

against a set of topics, what is sought in not the system’s performance on those top-

ics as such, but rather a prediction of the system’s performance on all topics; and it is

possible that a metric m might be a better predictor than a metric n of user satisfac-

tion on other queries, even if metric n correlates more strongly with satisfaction on the

particular evaluated queries.
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P@10 RR RBP.95 AP nDCG

P@10 0.64 0.48 0.64 0.64 0.64

RR 0.36 0.48 0.47 0.47

RBP.95 0.68 0.70 0.69

AP 0.80 0.79

nDCG 0.80

Table 3.2: Predictivity of different metrics on the top 75% of TREC 2004 Terabyte

track systems. Predictive power is the mean Kendall’s τ on system rankings resulting

from 2,000 random partitionings of the 50-topic set into two 25-topic subsets. Higher
values mean greater predictivity.

Take, for instance, the reciprocal rank (RR) metric, Assume that the metric per-

fectly represents the user experience. Consider the rankings given in Figure 3.9. Sys-

tem A has returned only one of the nine relevant documents, but at rank 1; System B
has returned all nine of the relevant documents, but beginning from rank 2. System A
outscores in RR, System B in AP. By our assumption, RR measures user satisfaction

more accurately than AP for this query. It appears, however, that (on this very slight

amount of evidence) SystemB is the more reliable system, given the weight of relevant

documents it finds, as reflected in the AP score. Therefore, System B is more likely to

outperform System A on other queries, even as measured by RR, and therefore to give

better overall user satisfaction. This can be expressed by saying that while RR might

be a good user metric, AP is a better system metric.

In Webber et al. (2008c), we examine the predictivity of the simple metrics P@10
and RR, and of the more complex metrics RBP, AP, and nDCG. Predictivity is mea-

sured as the correlation of system rankings between two different topic sets, under

either the same metric or different metrics. The results for the TREC 2004 Terabyte

collection are given in Table 3.2; similar results were observed on the TREC 8 Ad-

Hoc collection. The more complex metrics are more predictive of RR than RR is of

itself, and as predictive of P@10. Even if one metric correlates perfectly with user

satisfaction, there can be circumstances where another metric is preferable.

Plausibility of user model

Rather than empirically correlating user satisfaction and metric score, a metric can be

assessed by the plausibility of the user model underlying it. We have observed that

RBP is based on such a user model, one of utility modulated by persistence; and DCG

has a (less clearly formulated) user model of gain and effort behind it, too. Recall-

based metrics like AP have been criticized for their lack of a plausible user model,

as observed in Section 3.2.2, while others have sought to defend AP by identifying a

user model behind it (Robertson, 2008b). Similarly, precision at ten can be viewed

as modelling a user that looks at every entry on the first page of search results, and

no entries beyond, while a user model for reciprocal rank has been suggested in the

previous section. Basing metrics on user models is a natural extension of the modelling

approach on which the test collection method is based. Plausibility is not, however, a

well-defined measurement; it is difficult objectively to determine that one metric’s user

model is more plausible than another’s.
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Statistical characteristics

Correlation with user satisfaction and plausibility of user model are both user-centric

criteria for metric meta-evaluation. Other criteria are more system-centric or statistical

in nature. Metric predictivity, discussed above, is one such; we review others briefly

here. Aslam et al. (2005) suggest using maximum entropy, wherein the best metric is

the one whose score places the strongest constraint on the possible document rankings

it is derived from. Not surprisingly, the more complex the metric, the greater the con-

straints it imposes, with (for instance) average precision being more constraining than

precision at ten.

Other meta-evaluation approaches focus on statistical stability and predictivity.

Sakai (2006) proposes that metrics should be assessed on their discriminative power;

that is, the proportion of differences between systems that are statistically significant

under a metric (see Section 3.3 for a discussion of statistical significance). A more

special-purpose measure of stability, called the swap rate, is proposed by Buckley and Voorhees

(2000). The swap rate (described in more detail in Section 3.3.6) measures how often

an ordering of two systems on one set of topics is swapped on another. Discriminative

power and swap rate both measure metric consistency, and report AP and nDCG as

stabler than the simpler P@k metrics.

Related to metric stability is the score variability between different systems (the

system effect) compared to the variability between different topics (the topic effect)

(Tague-Sutcliffe and Blustein, 1994; Banks et al., 1999). It is desirable to maximize

system effect and minimize topic effect, so that differences in system scores stand out.

An analytical framework for addressing this question, that of generalizability theory,

was introduced to the field by Bodoff and Li (2007), and applied by Kanoulas and Aslam

(2009) to derive empirical gain and discount factors for use in nDCG. Score standard-

ization, discussed in Chapter 4, eliminates the topic effect on absolute scores (though

not on score deltas) for a closed set of systems, and greatly reduces it in an open set.

An issue of metric meta-evaluation that has attracted relatively little attention is

the tradeoff between accuracy and effort in evaluation. Sanderson and Zobel (2005)

address this question, using a combination of the swap rate (Buckley and Voorhees,

2000) and statistical significance to investigate whether it is more stable, given a fixed

assessment budget, to assess a few topics deeply, or a large number shallowly. Their

finding is that a broader, shallower evaluation gives a more stable evaluation. A more

general approach to planning the amount and assignment of assessment effort for an

experiment requires the use of the statistical technique of power analysis. We examine

the application of power analysis to information retrieval evaluation in Chapter 5. Other

approaches to stretching assessment budgets are discussed in Section 3.4.2.

3.2.6 Scoring the system

We have described several evaluation metrics, and examined criteria that can be used

in choosing between them. The purpose of an evaluation metric is to convert the rel-

evance vector for a ranking into a numerical score. These per-topic scores are then

aggregated into a single score for the system against the test collection, typically by

taking the arithmetic mean. Figure 3.10 illustrates the process of taking the thousands

of individual relevance scores, themselves a radical reduction of the complex relation-

ship between a document and an information need; reducing each relevance vector to a

single summary score, which for most metrics is essentially a weighted average of the

ranking’s relevance mass; then further reducing these topic scores to a single collection
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Figure 3.10: Scoring a system. The system is CL99XT from the TREC 8 AdHoc

Track. The bottom part shows the relevance vectors; rows are ranks, columns are

topics. Relevant documents are marked in black, irrelevant in white. The evaluation

metric applied is RBP, p = 0.95. The gradient on the left gives the weight of each rank
under the metric. In the middle of the figure, the relevant vectors have been scored; the

shade of the box indicates the score achieved, with darker shades representing higher

scores. As with most precision-based metrics, RBP is a weighted summary of the

relevance proportion in the relevance vectors. On the right is the shade representing

the system’s mean score. On the top part of the figure, the per-topic RBP scores have

been plotted, and the mean score of 0.49 marked.
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score, which represents the system’s performance.

Alternative topic score aggregations than the arithmetic mean have been proposed

in the literature. The most common is the geometric mean (Robertson, 2006), suitably

adjusted to handle zero scores, although the harmonic mean or the median are also

candidates (Ravana and Moffat, 2009). The theoretical choice between them depends

on whether metric scores are on an interval or ratio scale (Stevens, 1946). No com-

pelling general answer has been given, but it is plausible that a given score difference

has more significance at low scores than at high ones; that outscoring another system

0.05 to 0.02, for instance, means more than outscoring it 0.85 to 0.82. The geometric

mean places greater weight on absolute differences amongst lower scores, and has been

adopted as a way of emphasizing hard queries compared to easy ones, for instance in

the Robust track of TREC (Voorhees, 2004). Score standardization, presented in Chap-

ter 4, is a more direct and consistent solution (Ravana and Moffat, 2008).

A system’s aggregate score is used primarily to compare one system’s performance

against that of other systems. The variability of topic and therefore collection diffi-

culty means that this comparison must be made on the same collection, unless score

standardization is employed (Chapter 4). Even on the one collection, though, it is

misleading to simply compare the aggregate scores. What is required instead is a pre-

diction of how reliably the observed outperformance of one system over another can be

generalized from the limited sample of topics in the test collection to the broader popu-

lation of topics that would be encountered in operation. Measuring this generalizability

requires the tools of statistical analysis; we turn to this topic next.

3.3 Statistical analysis

We have discussed the model and method of system evaluation through test collections

(Section 3.1), and the use of evaluation metrics to calculate a system’s effectiveness

score (Section 3.2). Two retrieval systems are compared by the effectiveness scores

they achieve on the one collection; but the comparison only applies directly to the col-

lection’s topics, which are a small subset of all the topics that the systems would have

to process when deployed. The question then becomes how confidently the perfor-

mance comparison can be generalized to the full population of topics. We consider the

question of generalization in this section.

3.3.1 Particular results, general conclusions

The top half of Figure 3.11 shows the result of a typical comparative retrieval experi-

ment. Two systems, A and B, have been run against the one test collection, and their

average precision scores calculated on each topic. Because the same topic set has been

used for each system, the scores can be paired by topic. Each system’s topic scores are

averaged to produce a system score against the collection. System A has achieved a

mean score of 0.37, compared to 0.31 for System B. System A has therefore outper-

formed System B on this collection, as measured by mean average precision.

An alternative view of these results is to look at the score differences, or deltas,

between the two systems on each topic, shown in the bottom half of Figure 3.11. Ex-

amining deltas clarifies the differences between the two systems, both visually and

statistically, but loses information about absolute scores. We might, for instance, want

to interpret the near-zero delta of the lowest-scoring topic differently from the near-

zero delta of the sixth-highest scoring one; this is the sort of question that taking the
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Figure 3.11: Per-topic and mean AP scores achieved by two participant systems for

the TREC 8 AdHoc track (top), and the per-topic differences between those scores

(bottom). Topics have been ordered by the mean of the per-topic scores for the two

systems. In the lower figure, a positive delta indicates System A outperformed Sys-

tem B, a negative delta the reverse. System A is CL99XT; System B is apl8c221.
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Population Sample Unit

9.52

mean = 8.40

true mean = ???

Parameter Statistic Value

Figure 3.12: The standard model of statistical inference. The experimental units are

regarded as a sample from a larger population. The mean of the observed values, or

statistic, on the sample is used to infer the mean, or parameter, on the full population.

geometric mean partially addresses.

If the topics and documents in the test collection were the only topics and docu-

ments that these two retrieval systems were ever to be run on, then the experimental

evaluation would be complete. In reality, however, retrieval systems operate on a wide

range of queries and documents, of which the particular instances contained in the test

collection are merely representative. As mentioned previously, the interest is not so

much in how well the systems perform on the test collection in particular, but rather

what these results predict of retrieval performance in general.

Generalization of retrieval scores can be considered along many dimensions. Robertson

(1981) lists several (for instance, generalizing from current documents to documents

in five years’ time), and Cormack and Lynam (2006) calculate confidence intervals for

retrieval scores over different document samples. In practice, though, query generaliza-

tion is the most studied dimension, since the query set is, due to resource constraints,

far more limited in size than the document corpus. Therefore, the key question is how

confidently the comparative effectiveness achieved on the collection’s query set can be

generalized to all queries.

Generalization is tied to variability: the greater the variability in the results, the

less confidently they can be generalized. We may have more confidence in a small

margin, if it is consistent across topics, than in a larger one, if the consistency is lack-

ing. A form of variability obvious in the top part of Figure 3.11 is in absolute topic

scores. This topic variability is partially controlled by pairing scores and taking deltas,

as shown in the bottom part of Figure 3.11; it can more generally be managed by score

standardization, described in Chapter 4. Even with paired scores, however, much vari-

ability remains. For instance, although System A has a higher score overall, System B
still manages to beat it on fifteen of the fifty topics. The magnitude of the score deltas

is also highly uneven; if signs were switched on just the three topics with the highest

positive score delta, then System B would have the higher mean score. Given these

variabilities, how confident are we that System A’s higher score has not occurred from
chance in the choice of topics?
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3.3.2 Population, sample, statistic, parameter

Questions of the generalization of experimental results are addressed using the tools of

statistical inference; but first, the problem must be mapped to the appropriate model. In

generalizing from the test query set to other queries, the test set is modelled as a sample

from the full population of queries. Where queries are taken from an operational query

stream, then the population is the query stream. Where queries have been explicitly

created, the population can (rather unsatisfactorily) be defined as “all queries that might

have been created by a similar process”, in the hope that the process is representative of

the formulation of authentic user queries. Each query in the sample is an experimental

unit. It is assumed that the sample has been drawn by (uniform) random sampling.

This assumption is crucial, because it allows probabilistic inferences to be made from

sample back to population.

For each unit, or query, in the sample, an experimental value is observed. For

comparative evaluations between two systems on the same collection, the value is the

score delta on the query. A summary function or statistic is calculated over the unit

values. Figure 3.12 summarizes this inferential model. In Figure 3.11, if the statistic

were the arithmetic mean, then the statistic’s value would be +0.06, the mean score

delta. Alternatively, if the statistic were the proportion of queries on which System A
outscored System B, then the statistic’s value would be 0.7 (35 out 50). The quantity

of interest to the experimenter is the value of some summary function or parameter on

the population. Typically, but not always, the statistic on the sample and the parameter

on the population are the same function. The statistic on the sample is then used to

infer the parameter on the population. If the parameter were the mean, then the value

sought would be the true mean delta, and the informal question “is System A really

better than System B?” translates to the statistical question “is the true mean delta

between System A and System B positive?”.

3.3.3 Statistical significance tests

It is not possible to determine with certainty the parameter on the population from the

statistic on the sample (unless the whole population is sampled), nor yet definitely to

answer the question of whether one system is really better than another. In our running

example, we may, by extreme chance, have chosen the only thirty-five queries in the

whole population on which System A outperforms System B. It is, however, possible

to give a probabilistic answer. The manner of doing so is analogous to the proof by

the reductio ad absurdum of a contradiction in mathematical logic: we propose a hy-

pothesis, called the null hypothesis, that denies the assertion we wish to test, and then

see how probable it is that the observed statistic (or greater) would have occurred if the

null hypothesis were true. This latter probability is termed the p value of the test; if it

is below some threshold α, then we reject the null hypothesis, not as disproven, but as

implausible, and conclude that the result is statistically significant at the α level. Con-

ventional values of α are from the set {0.05, 0.01, 0.001, . . .}; the smaller the value of

α, the more stringent the test.

Sign test

The workings of statistical significance can be illustrated with a simple but elegant

hypothesis test called the sign test (Gibbons and Chakraborti, 2003, Chapter 5). The

sign test is a test of proportions; specifically, of the proportion of values in the sample
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Figure 3.13: Binomial distribution for sampling 50 elements from a population with

proportion 0.5 positive. Samples having 35 or more positive elements are marked.

and population that have a given (positive or negative) sign. Let q be the (unknown

to us) proportion of positively signed values in the population; in the running exam-

ple, the proportion of queries on which System A gets a higher score than System B,

with ties ignored. A randomly drawn value V then has probability q of being positive.

Therefore, V is a random variable following a Bernoulli distribution with parame-

ter q—colloquially, a biased coin with probability q of turning up heads (positive), and
1− q of turning up tails (negative). Now, if we randomly draw a sample of size n from

the population (flip the coin n times, or select n queries at random from our query

stream), then the probability of getting m positive values is
(

n
m

)

qm(1 − q)n−m. In

other words, the number of positive values follows a Binomial(n, q) distribution. This
is the sampling distribution of the statistic; that is, the distribution giving the probabil-

ity that a statistic (here, proportion) of a random sample falls on a particular value or

(for continuous values) within a certain range.

The observed statistic in the running example is that SystemA outscores SystemB
on 35 out of 50 queries. What then is to be tested is whether System A is truly better

than System B on a majority of queries in the population. The null hypothesis follows

immediately: it is that the two systems are as good as each other; SystemA outperforms

on half the queries in the population, System B on the other. The null hypothesis is

tested by determining the probability, having sampled 50 values from a population with

50% positive, of at least 35 values in the sample being positive. This probability gives

the p value of the test, and can be directly determined from the Binomial sampling

distribution as p = 0.0033, as illustrated in Figure 3.13, making the test significant

at the α = 0.01 level. If that level is regarded as sufficiently stringent, then the null

hypothesis is rejected, and the result found to be statistically significant.

The test as carried out above is a one-tailed test: only the upper tail of the sampling

distribution, namely that of majority positive values, is considered. The alternative,

two-tailed test examines the probability that at least 35 of the values would be of the
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same sign, positive or negative. The two-tailed test is more stringent than the one-tailed

test. For a symmetrical distribution, the p value of the former is twice that of the latter;

here, that is p = 0.0066, still significant at the α = 0.01 level.

Bootstrap test

The sign test is easy to understand and calculate, but it is a test only on proportions,

not on the score mean; it ignores information about the magnitude and variability of

score deltas. Performing a significance test on the mean requires estimating the sam-

pling distribution of the mean. Unlike the proportion, the mean’s sampling distribution

does not follow directly from the null hypothesis; not merely the hypothesized mean,

but also the shape and dispersion of the population is required. One way to estimate

the sampling distribution of the mean, and of other statistics as well, is a resampling

method known as the bootstrap test (Efron and Tibshirani, 1993; Savoy, 1997).

The intuition behind bootstrapping is as follows. If the distribution of the popu-

lation were known, then repeated samples could be drawn from it to empirically ap-

proximate the sampling distribution of the mean. Unfortunately, the distribution of the

population is not known; absent other information, the best estimate of it is given by the

distribution of the observed sample. Therefore, sampling from the population can be

simulated by resampling, with replacement, from the sample. The null hypothesis for

tests of the mean is that the true mean of the population (here, of score deltas) is zero,

so the distribution of resampled means is shifted to centre around zero. Then, the pro-

portion of resampled means that are higher (one-tailed) or more extreme (two-tailed)

than the observed mean gives the p value of the significance test.2

Figure 3.14 displays the estimated sampling distribution of the mean, derived from

5,000 resamplings of the topic AP deltas between System A and System B from the

running example. The size of each resample is 50, the same size as the original sample.

The estimated distribution centres around zero; this follows from the null hypothesis

of a true mean population delta of zero. A two-tailed test is performed by counting

the proportion of resampled means whose absolute value is equal to or greater than the

mean of the original sample; this proportion is the p value of the test. Here, 68 of the

5,000 resamples have means less than or equal to the negative of the observed mean,

and 81 have means greater than or equal to the observed mean. Therefore, the overall

p value is (68 + 81)/5000 = 0.0298, making the result significant at the α = 0.05
level, but not at the α = 0.01 level. The achieved significance level is weaker for

the bootstrap than for the sign test; the variability in delta magnitudes in Figure 3.11

makes it more plausible that the observed positive mean delta for System A occurred

by chance. The bootstrapped sampling distribution here is not symmetric, but has a

slight positive skew; this reflects the positive skew in the sample (the sample mean is

0.058, higher than the median of 0.053).
The bootstrap test is straightforward to implement, can be applied to other statis-

tics than the mean, makes no assumptions about the distribution of the population, and

can be used with any sample size. It is, however, computationally intensive, which

made it impracticable until recent decades, and is still an issue where very many sig-

nificance tests need to be performed (for instance, in the inner loop of a simulation).

Additionally, as a randomized method, the precise p values, and in marginal cases the

significance levels, vary from resample to resample.

2Greater stability can be achieved by using a studentized statistic rather than the plain mean; see
Efron and Tibshirani (1993, Chapter 16) and Davison and Hinkley (1997, Chapter 4) for details.
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Figure 3.14: Bootstrap distribution and two-tailed significance test for the two systems

shown in Figure 3.11. A total of 5,000 bootstrap resamples have been taken to derive

the sampling distribution. Of the resamples, 68 have a mean less than the negative of

the observed mean, and 81 have a mean greater than the observed mean. The p value

of the test is therefore (68 + 81)/5000 = 0.0298.

The t test

For the sign test, the sampling distribution is fully determined by the null hypothesis;

for bootstrapping, the distribution is simulated by resampling. It is also possible in

some circumstances to determine the sampling distribution of the mean by theoretical

methods. We examine two closely related methods. Both make use of the normal dis-

tribution; the shape of this often-encountered distribution is displayed in Figure 3.15.

It can be shown that the mean of a random sample taken from a normal popula-

tion follows a particular distribution, known as the t distribution. The t distribution
is parameterized by its degrees of freedom. It resembles a fat-tailed normal distribu-

tion; the shape becomes more normal as the degrees of freedom increase. Figure 3.15

gives sample t distributions, along with a standard normal distribution. Stated more

precisely, if X is the mean of a random sample of n elements, with sample standard

deviation S, drawn from a population that is normally distributed with mean µ, then
the statistic:

T =
X − µ

S/
√
n

(3.14)

follows the t distribution with n − 1 degrees of freedom (Wasserman, 2004, Chapter

10). As the sample size n increases, the sampling distribution of the mean becomes

less fat-tailed, essentially because the estimate of the standard deviation becomes more

accurate. The relationship between the normal and t distributions can be directly used

to test significance, provided we know or can reasonably assume that the population is

normally distributed. Values of X and S from the sample are fed into Equation 3.14,

and µ is set to 0, as dictated by the null hypothesis. The resulting value of the T statistic

is then compared against the cumulative t distribution, with the appropriate degrees of
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Figure 3.15: Example t distributions with various degrees of freedom, and the standard

normal distribution. The area under each of these curves is 1. If the probability density
function of one of these distributions is f(x) (the “Probability Density” given on the y

axis), then the probability of a random value x falling in the range (a, b) is
∫ b

a
f(x)dx.

freedom. The p value of the test is, as usual, the proportion of this distribution with

values equal to or more extreme than that observed in the sample; the more extreme

the T statistic, the small the p value. This method constitutes the t test for statistical
significance.

Unfortunately, the underlying population cannot always be assumed normal; and

there is no reason to believe that evaluation metric score deltas are normal, making the

above justification for using the t test invalid. Another feature of the sampling distri-

bution of the mean can, however, be applied; namely, that the mean of a sufficiently

large sample is approximately normal in its distribution, whatever the distribution of

the population. This is known as the central limit theorem (CLT), and can be more

formally stated as (Wasserman, 2004, Chapter 5):

Theorem 3.6 Central Limit Theorem: the distribution of the mean of a random sam-

ple of n independent and identically distributed random variables with finite mean µ
and variance σ2 becomes, for large enough n, approximately normal in its distribution,
with mean µ and variance σ2/n.

A significance test on the mean can be derived from the central limit theorem, provided

the sample is sufficiently large; a common rule of thumb for sufficiently large is a

sample size of 30 or more. The test statistic is identical to that for the t test, given in

Equation 3.14. Formally, the p value is calculated from the normal distribution; but

since the normal and t distributions are almost identical for large samples, in practice

the t test is frequently employed.
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Alternative tests

Other hypothesis tests are available. In the Wilcoxon sign-rank test, absolute score

deltas are ranked; a test statistic is then calculated over the signed ranks, and compare

to a theoretical distribution under the null hypothesis to determine significance. Both

the sign test and the Wilcoxon test are simplified forms of permutation tests; they

compute every combination of signs in the sign test, or rank in the Wilcoxon test, and

observe what proportion give a statistic (proportion or sum of ranks) greater than that

observed in the sample. A permutation test could in theory be applied directly to the

score deltas; but for large sample sizes, the number of possible permutations is too

great, over 1015 for a sample size of 50. Instead, in the randomized permutation test,

a certain number of permutations are randomly generated, and significance estimated

based on these sub-samples (Smucker et al., 2007).

Several hypothesis tests have been described above. The randomized and bootstrap

tests are attractive for the minimal assumptions they make. In practice, though, test col-

lections usually have at least 50 queries, which is sufficient for applying the t test under
the central limit theorem. Smucker et al. (2007) compare the bootstrap, randomized,

t, and Wilcoxon tests on TREC data. They find the former three to give very similar

results, and the Wilcoxon test to be less reliable. Because of its simplicity of calcu-

lation, and the determinacy of its results, the t test is the significance test employed

here, while resampling methods similar to the bootstrap are used for experiments that

go beyond simple significance testing.

3.3.4 Achieving significance

The formulation of the T statistic in Equation 3.14 shows three factors in achieving

significance: the mean, standard deviation, and size of the sample. The sample size

is the factor most directly under the experimenter’s control. A doubling of the stan-

dard deviation, though, requires a quadrupling of the sample size to compensate, so

reducing sample variability is crucial, if it can be done. We have already observed

in Figure 3.11 on page 50 an important technique for variability reduction; namely,

pairing topic scores and taking the deltas. A paired test helps to control the variabil-

ity in difficulty between topics, which Figure 3.8 on page 44 shows to be very high.

If the systems were run against different topic sets, then a two-sample test would be

required. In this case, the enormous variability in topic difficulties, unrelated to the

quality of the systems, would increase the apparent variability in the sampled scores,

making significance much more difficult to achieve. For instance, a paired t test on the
systems shown in Figure 3.11 gives a p value of 0.035; but if the scores are not paired,
then a two-sample t test gives a p value of 0.202, well short of significance. Topic

variability therefore makes comparing scores between different collections difficult;

controlling variability through score standardization, described in Chapter 4, addresses

this problem. In addition, Chapter 5 examines the estimation of likely significance

during retrieval experiment design.

3.3.5 Confidence intervals

Significance tests of the mean give the probability that the observed result could have

happened by chance. Also of interest is determining the interval within which the true

mean falls, with a given probability. Such an interval is known as a confidence interval.
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The calculation of a confidence interval is most easily illustrated using the boot-

strap method. Consider again the distribution of bootstrapped means in Figure 3.14. It

is straightforward to find the 2.5th and 97.5th percentiles of these means. This, cen-

tered around the observed mean, might seem to give us a 95% confidence interval, but

there is a subtlety: if the true mean is above the observed mean, then it is the lower tail

of the displayed distribution that must be tested against; if below, the upper tail. The

2.5th percentile of Figure 3.14 is −0.051, the 97.5th percentile 0.053, which gives a

95% confidence interval of (0.005, 0.109) on the true mean delta between System A
and System B. The full range is positive, which accords with the finding that Sys-

tem A is significantly better than System B; the calculations of significance and of

the confidence interval, though, are not identical.3 Confidence intervals can be simi-

larly calculated based on the t distribution, provided the standard requirements (normal

population or large sample) are met.

The above confidence intervals are on score deltas between system pairs. If there

are n systems, then there are n(n − 1)/2 pairwise confidence intervals to consider.

A confidence interval can also be calculated on the mean score of a single system.

It would be convenient to use the overlap between these n confidence intervals as at

least a rough indication of the pairwise confidence intervals, and indeed of the pairwise

significances. The confidence intervals on the mean, however, are greatly widened by

topic variability, compared to those on the (paired) scores deltas, just as the two-sample

significance test is far weaker than the paired test. So, for instance, the 95% interval on

the t distribution for the mean of System B in the running example is (0.249, 0.381),
while for SystemA it is (0.311, 0.435). These intervals overlap by a wide margin, with

each system’s mean score falling within the other’s confidence interval, even though the

systems are significantly different in a paired test. In Chapter 4, confidence intervals

on mean scores are narrowed to a width more indicative of the paired intervals through

score standardization.

3.3.6 Rank similarity measures

In meta-evaluative studies, we frequently wish to compare test environments for con-

sistency or stability, by changing the evaluation metric, say, or the set of topics. One

ground for comparison is between the rankings that each environment induces over a

set of systems via the systems’ effectiveness scores. Such analysis requires a measure-

ment of the similarity between a pair of rankings. Several such rank similarity metrics

are described in this section.

Pearson’s correlation coefficient

In some cases, not just ranks are available, but also the scores that determined those

ranks; this is generally the case with systems ranked by effectiveness scores. It is

then possible to measure the correlation between scores, rather than just the similarity

between rankings. The standard measure of correlation is Pearson’s product-moment

correlation coefficient, denoted r. Let i ∈ {1, . . . , n} identify the ranked items, and X
and Y the two rankings, such that Xi is the score that item i achieves in ranking X ,

3There are a range of methods to improve the accuracy of this basic bootstrap interval; see
Efron and Tibshirani (1993, Chapters 12–14) and Davison and Hinkley (1997, Chapter 5).
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and Yi its score in ranking Y . Then the correlation coefficient is:

r =
cov(X,Y )

σ(X)σ(Y )
=

∑n
i=1(X −Xi)(Y − Yi)

√

∑n
i=1(X −Xi)2

√

∑n
i=1(Y − Yi)2

, (3.15)

that is, the covariance of the scores of the two rankings divided by the product of their

standard deviations (σ(·), read “sigma”). If Yi = a · Xi + b for a > 0 and any b,
then r = 1; graphically, the scores lie on a straight, upward-sloping line, and the two

rankings are said to have perfect positive correlation. If Yi = −a · Xi + b, then the

rankings have perfect negative correlation. The degree to which r is less than 1 and

more than −1 measures the degree to which the scores of the two rankings deviate

from this perfect linear relationship. If the scores were chosen randomly, then the

expected correlation would be 0.
Unlike purely rank-based measures, Pearson’s correlation is sensitive to the magni-

tude of score deltas, penalizing swaps against large deltas more than against small, and

penalizing delta changes when no swap occurs, too. The coefficient assumes, however,

that perfect correlation is linear; that is, that the scores of one ranking are a constant

multiple plus a constant factor of the other. Experimenters are often reluctant to make

this linear assumption between system rankings—perhaps two metrics have a perfect

but curvilinear relationship. Also, experimenters sometimes care only about actual

changes in rank, not in score. Finally, there are frequent cases in which only ranks, not

scores, are available.

Kendall’s τ

Similarity measures that make use only of rank information are rank similarity mea-

sures in the proper sense. One such measure is Spearman’s ρ (read “rho”), based on

the square of the distance between the ranks of an item; this measure is equivalent to

Pearson’s correlation calculated over the ranks, rather than the raw scores, of the items.

An alternative, known as Spearman’s footrule, instead measures the unsquared or L1

distance between ranks.

A more popular rank similarity measure in retrieval evaluation is Kendall’s τ (read

“tau”). Kendall’s τ is calculated by counting the number of concordant and discordant

pairs between the two rankings. A concordant pair is where two items i and j are

placed in the same relative order in both rankings (i above j in both, or i below j
in both); a discordant pair is one where the order differs. Ties need to be handled

specially, and will be assumed in this exposition not to occur. Let tc be the number of

concordant pairs, td of discordant ones. Then, Kendall’s τ is:

τ =
tc − td
tc + td

. (3.16)

If all pairs are concordant, then τ = 1, and the rankings are identical; if all pairs are

discordant, then τ = −1, and the rankings are reversed. If concordant and discordant

pairs are evenly balanced, then τ = 0. The latter would be expected if the observed

items were randomly sampled from a population itself with τ = 0; a significance test
is available that tests this null hypothesis.

A working of Kendall’s τ on two example rankings S and T is given in Figure 3.16.

The set of concordant pairs is enumerated in CST , whileDST lists the discordant pairs.

Discordant pairs can be found graphically by drawing a straight line between each item

in S and the corresponding item in T , as is done in the figure; whenever two of these
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CST = {(a, b), (a, c), (a, d), (a, e), (c, d), (c, e)}
DST = {(c, b), (d, b), (e, b), (e, d)}

C = |CST | = 6

D = |DST | = 4

M = C −D = 2

τ = M/P (n) = 2/(C +D) = 2/10 = 0.2

Figure 3.16: Example working of Kendall’s τ .

lines cross, the ordering of the respective items is discordant. The total number of pairs

is the sum of C, the number of concordant pairs, and D, the number of discordant

pairs, so τ is the proportion of these pairs that are concordant, linearly adjusted to the

range [−1, 1].
If a pair of items are selected at random from two rankings with a given τ , then the

probability that the pair is concordant in the two rankings is:

P (concord) =
tc

tc + td
=

τ + 1

2
. (3.17)

The probabilistic understanding aside, though, interpreting a τ score in isolation is not

straightforward. The significance test for positive relationship is not meaningful for

most system rankings; it is implausible that two evaluation metrics, or system perfor-

mance on two topics sets, would have no relationship. A proposed rule of thumb is that

system rankings with a τ above 0.9 should be considered equivalent, whereas those

with a τ below 0.8 display noticeable differences (Voorhees, 2001); but such rules are

at best rough guides, affected as they are by the size and characteristics of the system set

(for instance, defective systems with consistently low scores increase τ ). Kendall’s τ is

more easily interpreted as a comparative measure; for instance, to determine which of

two topic subsets gives a system ranking closer to that of the full topic set. The question

of significance recurs, though: is the ranking on one subset significantly closer to the

full ranking than on the other? While there are tests of significance for this case (Cliff,

1996), they are not widely used, and in any case set wide bounds, making significance

difficult to achieve. Additionally, such significance tests assume that it is the systems

that are randomly sampled, whereas in practice it is the topics that the experimenter

wants to generalize over (Carterette, 2009).

Alternative measures

System rankings are compared so frequently in retrieval meta-evaluation that the field

has produced several new measures. One family of these, the swap rate, counts how

frequently system pairs swap order when evaluated against different query sets. In

Buckley and Voorhees (2000), the swap rate is computed over parallel query formu-
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lations. Voorhees and Buckley (2002) randomly partition the one topic set, and ag-

gregate swap rates between the partitions into bins defined by system score deltas.

Sanderson and Zobel (2005) only record swaps between systems with significantly dif-

ferent score deltas, and argue that the sampled query sets should not be disjoint.

A more specialized rank similarity metric is proposed in Carterette (2009): not only

must the two rankings be of retrieval systems, but they must be over the same query

sets; only the evaluation metric can differ. The proposed measure, denoted drank , takes
account of the topic score correlations between systems. Swaps between dissimilar

systems are more heavily penalized than between similar systems, as are swaps that

separate systems with highly correlated topic scores. The measure provides a signifi-

cance test over the population of topics.

When comparing system rankings, it is frequently more important that highly-

ranked systems are similarly ordered than that lowly-ranked systems are. The τAP
measure proposed by Yilmaz, Aslam, and Robertson (2008a) is top-weighted in this

way. Like Kendall’s τ , the measure penalizes discordant pairs, but the penalty for

discordance is weighted by the reciprocal of the rank of the lower-ordered item—the

same weighting scheme as average precision. The measure is not symmetric, since one

of the rankings must be nominated as determining item ranks for weighting purposes.

Melucci (2009) generalizes τAP to a family of measures, τ∗, in which arbitrary weights
can be assigned to the lower of the pair of ranks in the objective ranking. Melucci fur-

ther demonstrates that τ∗, and therefore τAP, are specializations of the class of weighted
τ variants, τw, analyzed by Shieh (1998), in which each pair of ranks can be assigned

its own weighting.

The rank similarity measures described above are primarily used for comparing

system rankings. An even more common ranking in information retrieval is the ranking

of documents returned by a retrieval system. Document rankings are non-conjoint, so

the above measures cannot be applied. In Chapter 7, we combine the properties of

non-conjointness, top-weightedness, and arbitrary continuability, to identify a class of

indefinite rankings, and propose a metric of similarity between indefinite rankings,

called rank-biased overlap.

3.3.7 Kernel density estimates

Various graphical data representations are used in this thesis, such as dot plots, line

graphs, box and whisker plots, and so forth. It will be assumed either that the reader

is familiar with these representations, or that their meaning can be worked out with the

help of the summary notes provided. There is, however, one form of representation that

will be used throughout the thesis which may not be so familiar; namely, the plot of a

kernel density estimate (Silverman, 1986), which offers a kind of smoothed histogram.

A histogram is a plot of the distribution of values in a one-dimensional data set.

The range of the values is divided up into equally-spaced bins, and the number of items

falling into a bin determines the height of that bin’s bar. The two parameters of a

histogram are the width of each bin, and the offset of the first bin. Bin width affects

the jaggedness or smoothness of the plot, while the choice of bin offset can have a

major effect on the plot’s shape. The effect of offset choice is illustrated in Figure 3.17,

which displays the per-topic AP scores achieved by a particular TREC 8 AdHoc run,

and Figure 3.18, which shows two histograms of the data set, differing only in the

choice of offset. One offset results in an almost level histogram, shown in solid lines,

up to an average precision of 0.5, while the other offset produces three peaks.
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Figure 3.17: Individual AP topic scores for the system Flab8atdn run against the

TREC 8 AdHoc collection. The dotted lines show the bin boundaries for the histogram

shown in solid bordered, unfilled bars in Figure 3.18; the dashed lines show the alter-

native bin boundaries, marked in dashed, shaded bars used in Figure 3.18. Topics are

sorted by increasing AP score.
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Figure 3.18: Score histograms, derived from Figure 3.17. The solid line, unfilled bars

are for bins aligned to 0.1x boundaries, for x ∈ {0, . . . , 10}; these correspond to the

dotted dividing lines in Figure 3.17. The dashed line, shaded bars are for bins shifted

to the left by 0.05; these correspond to the dashed dividing lines in Figure 3.17. The

data points are shown at the bottom of the histogram as a 1-d plot.
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Figure 3.19: Density estimate over the per-topic AP scores of the system Flab8atdn

on the first ten topics by topic id of the TREC 8 AdHoc collection. The individual

Gaussian kernels are also plotted; note that there are two data points close together

around 0.25.

An alternative way to present of the distribution of a data set is to use a kernel

density estimate. This method gives each value in the data set a continuous contribu-

tion. The shape of this contribution is determined by the chosen kernel function, and its

width by the selected bandwidth. The contributions are then summed to form a contin-

uous curve. A common kernel function is a normal or Gaussian distribution. A choice

of bandwidth must be made, just as a bin width must be chosen for a histogram; but

there is no need to select offsets. Figure 3.19 illustrates a density estimate, on a subset

of ten topic scores, using a Gaussian kernel, with the standard deviation of each kernel

set to σ = 0.9 by a rule-of-thumb method (Silverman, 1986, Equation 3.31).

A problem with kernel estimates is that, in their straightforward form, they do

not respect bounds on the range of the data values. Most evaluation metric scores

take values in the range [0, 1]; yet the estimated distribution in Figure 3.19 allocates

positive density beyond these limits. An obvious solution to the problem is to truncate

the density at the boundaries. But then data values near the boundaries lose some of

their density contribution. The problem is significant with evaluation metric scores,

since there is generally a cluster of them that are close to the 0 boundary.
Several methods of boundary correction for kernel density estimates have been

proposed. The more complex of them involve applying transformations to the data set

(Marron and Ruppert, 1994), or employing special adaptive kernels at the boundaries

(Jones, 1993). We employ the simpler reflection method (Silverman, 1986; Cline and Hart,

1991). Under this method, density falling beyond a boundary is reflected back at the

boundary into the valid range. Equivalently, if the lower bound is a (here, 0), and the

upper bound is b (here, 1), then the dataset is augmented by reflection in each boundary,

to the formX∗ = {X1, 2a−X1, 2b−X1, . . . , Xn, 2a−Xn, 2b−Xn}, and only then
is the density truncated at the bounds.

Figure 3.20 shows the unbounded kernel density estimate (dashed line) of the topic
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Figure 3.20: Density estimate over the per-topic AP scores of the system Flab8atdn

for all fifty of the TREC 8 AdHoc collection topics. The dashed lines show the un-

bounded density estimate; the solid line shows the density estimate bounded to the

[0, 1] range, with density outside this range reflected back at the boundaries.

scores for the system previously examined, along with the bounded estimate derived

using the reflection method (solid line). If simple truncation were used, the distribution

would fall off at either end. This fall would be particularly misleading at the lower

bound, since a number of scores cluster near this limit. The bounded density under the

reflection method correctly accounts for this cluster of low-scoring topics.

In density estimation graphs such as Figure 3.20, and more generally in graphs of

the density of continuous probability function such as Figure 3.15, the probability of

a random value falling within a certain range is given by the area under the curve for

that range, with the total area under the curve being 1. The y axis (marked “Density”

in Figure 3.20) provides the scale for calculating the area under the curve. So, for

instance, in Figure 3.20, the density for AP values between 0.2 and 0.4 is roughly 1.5;
therefore, we can estimate that (under the density estimate, if not necessarily among

the original scores themselves) (0.4 − 0.2) ∗ 1.5 = 0.3 of AP values fall within this

range.

3.4 Test collection construction

Building a test collection involves creating each of its components: a corpus of docu-

ments; a set of topics; and assessments of document-query relevance. The chief issue in

corpus creation is that of coherence between documents, while in topic set formation,

there are conflicting imperatives for using real queries on the one hand, yet having

queriers also act as assessors on the other. But the main difficulties are met in pro-

ducing the relevance assessments. Exhaustive assessment is infeasible, but incomplete

assessment is subject to inaccuracy and bias. Methods for selecting documents for rel-

evance assessment, and for dealing with incompleteness in the set of assessments, have
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attracted considerable research interest in recent years. These issues of test collection

construction are discussed next.

3.4.1 Corpus, queries, qrels

The document corpus is, from a technical perspective, the most straightforward com-

ponent to collect. Documents may be sourced from a third party, say from the archives

of a newswire service, or else crawled from the web. The chief technical question is

of corpus coherence. If a corpus is being created from a subset of the web, for in-

stance, then maintaining a realistic link structure requires some care; it would not be

adequate to sample documents at random (Bailey et al., 2003; Soboroff, 2002). Issues

of coherence aside, large corpora can be cheaply created, and corpus size is the least

constrained of the test collection dimensions.

In creating the topic set, there are two conflicting requirements, which are hard to

satisfy simultaneously. On the one hand, topics should be a random sample of real

queries; on the other, documents should be judged for relevance by the person who

issued the query. Queries can be sampled from a query log, but then assessors must

attempt to recreate the underlying information need. Conversely, assessors can write

the topics, but then queries are no longer a true random sample. Having the experi-

mental subjects manually create topics risks artificiality in the queries, but sampling

queries from a log ensures artificiality in the relevance assessments. In general, TREC

has chosen the former method, whereas operational systems appear to rely on the latter

(Harman, 2005a; (Pseudo-)Google, 2007).

The most challenging of a test collection’s components to create, however, is the

relevance assessments or qrels. For one thing, a document’s relevance to a topic is sub-

jective, especially when not assessed by the query formulator. Even amongst profes-

sional assessors of the same background, two-way inter-assessor relevance set overlap

of under 50% has been reported (Voorhees, 2000). The greater assessment challenge,

though, is the expense. Documents can be crawled, and queries sampled, but relevance

judgments must be performed by humans. Assessing every document for relevance to

each query is not feasible for a corpus of more than trivial size. But leaving documents

unassessed threatens the reusability of the collection; if those documents are returned

by retrieval systems, how are the systems to be evaluated? Qrel incompleteness has

been a recurrent issue in information retrieval, and one that has attracted strong re-

search interest recently.

3.4.2 Pooling, incompleteness, and bias

Only a tiny proportion a corpus will be relevant to any one query. For instance, there

are over 500,000 documents in the TREC 8 AdHoc corpus, but only 200 or so are

estimated to be relevant to the average query (Voorhees and Harman, 1999).4 One line

of thought holds that, if assessment effort can be focused on the documents most likely

to be relevant, then a good proportion of the relevant documents should be identified.

The standard method of focusing assessment effort is pooling (Spärck Jones and van Rijsbergen,

1975). A set of systems is run against the corpus for each topic, and the top d docu-

ments of each ranking are pooled for assessment (Harman, 2005a). The assumption is

that a system placing a document at a high rank is evidence in favour of the document’s

4The average number of judged relevant documents is 95, and Zobel (1998) estimates that around 50%
of relevant documents are located by pooling.
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relevance; and if the pooled systems are numerous and diverse enough, and pooling is

deep enough, then the relevant documents should be substantially covered by the pool

(Cormack et al., 1998).

Pooling, by design, leaves the majority of documents in the corpus unassessed.

For instance, pooling 71 systems to pool depth 100 at the TREC 8 AdHoc TREC led

to an average pool size of 1,736, or around a third of a percent of the full corpus.

Unpooled systems therefore can readily return unassessed documents at ranks above

the rank that pooled systems were pooled to. The standard approach is to assume

that an unpooled, unassessed document is irrelevant. Not all relevant documents will

be identified through pooling, though, making the relevance assessments incomplete

(Buckley and Voorhees, 2004). Since an unassessed document may be relevant, and

since only unpooled systems can return unassessed documents by pool depth, qrel in-

completeness leads to a pooling bias in favour of pooled systems, and of unpooled

systems that are similar to pooled ones (Zobel, 1998).

The reality of incompleteness and the potential for bias were first examined system-

atically by Zobel (1998). Zobel estimates that, for the early TREC AdHoc collections,

at best 50% to 70% of relevant documents were found by pooling. Nevertheless, by

removing individual systems from the pool and observing the change in their scores

(known as a leave one system out experiment5), Zobel concludes that pooling bias is

minimal. Voorhees and Harman (1999) confirmed this finding, using the more strin-

gent test of removing all systems submitted by the one group (a leave one team out

experiment). As a result of these studies, pooling bias was not held to be a serious

issue for the TREC AdHoc collections (Voorhees and Harman, 1999; Harman, 2005a).

These experiments, however, only cover the set of systems actually participating in

each TREC. It is still possible that an innovative system would find many unique, ac-

tually relevant but formally unassessed, documents, and suffer a heavy pooling bias.

Indeed, in the TREC 2005 Robust track, a pooled system that used an unusual pseudo-

routing approach was found to suffer a 23% drop in score when removed from the pool

(Buckley et al., 2007).

Corpus size has continued to grow over the years. The recent ClueWeb09 corpus,

for instance, contains over a billion documents (Callan and Hoy, 2009). It is reason-

able to assume that as collection size increases, the number of documents relevant to

each query will also increase, though perhaps not linearly. A particular concern is that

the pools may become filled with easy to find documents rich in query keywords, dis-

advantaging new systems that attempt to go beyond keyword matching (Buckley et al.,

2007). At the same time, even pooling is an expensive process, and it would be attrac-

tive to find a more efficient solution, particularly as that would allow an increase in the

topic set size, frequently felt to be inadequate (Carterette et al., 2008).

Several approaches have recently been proposed for resolving pooling bias, or re-

placing the pooling method altogether. Some methods retain pooling while attempting

to reduce pooling bias; these are discussed in Section 3.4.3. Another group of methods,

described in Section 3.4.4, attempt to increase the proportion of relevant documents

identified. Score estimation methods based on random sampling have also been pro-

posed; we examine these in Section 3.4.5. Section 3.4.6 describes another approach,

which chooses documents to maximize score deltas, based on a probability of rele-

vance model. There have also been proposals for pool-based evaluation without rel-

evance assessments, for instance by randomly marking pooled documents as relevant

(Soboroff et al., 2001) or scoring documents based on how many different systems re-

5System ablation would be a more concise term, but it has not come into standard usage.
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turn them (Wu and Crestani, 2003); such methods, however, are chiefly curiosities,

rewarding systems that are similar to others in the pool, rather than ones that are intrin-

sically of better quality, and serving to underline the dangers of pooling bias and (in

the case of Soboroff et al. (2001)) of metrics that evaluate beyond pooling depth.

3.4.3 Metric adjustment for qrel incompleteness

One approach to qrel incompleteness and the retrieval of unassessed documents is to

adjust the evaluation metric. Buckley and Voorhees (2004) propose the Bpref metric,

which is calculated only over assessed documents; unassessed documents are simply

ignored. To test their metric experimentally, Buckley and Voorhees create qrel sets

with different degrees of incompleteness, by random sampling from a pooled qrel set.

They demonstrate that Bpref is more robust to this form of incompleteness than existing

metrics: both absolute scores and system rankings are more stable as incompleteness

increases.

Rather than use a special-purpose metric, Yilmaz and Aslam (2006) propose the use

of average precision with unassessed documents removed from the ranking, a variant

they term induced AP. Induced AP and Bpref differ only in the latter using a less top-

weighted normalization of document pair contributions. Sakai (2007b) suggests that

rankings purged of unassessed documents, which he calls “condensed lists”, can be

used with any metric. Again using randomly-sampled qrels, Sakai demonstrates that

nDCG on condensed lists is more stable than Bpref.

Both Yilmaz and Aslam (2006) and Sakai (2007b) follow Buckley and Voorhees

(2004) in creating incomplete experimental qrel sets by random sampling. But such

sampling is unbiased, whereas many of the causes of incompleteness, such as pooling,

are not. Sakai (2008) re-examines condensed list metrics under partial pooling, and

finds them biased in favour of unpooled systems. Unpooled documents are less likely

to be relevant than pooled ones; removing them from the ranking of an unpooled system

allows lower-ranked, pooled documents to take their place, to the system’s favour.

In Chapter 6, we propose a more principled solution to qrel incompleteness than

either assuming unassessed documents to be irrelevant, or removing them from the

ranking. Our approach is to directly estimate the degree of pooling bias in a qrel set

via a leave one out experiment, either on the pooled systems, or on a subset of topics

for which the unpooled system is fully assessed, and adjust the scores of the unpooled

system accordingly.

3.4.4 Relevance-greedy and strategic selection

Pooling is a simple method for focusing assessment effort on documents that are likely

to be relevant. Other methods have been proposed for achieving an even higher pro-

portion of relevant documents amongst those assessed. The goal is to gain maximum

coverage of the relevance set with minimum effort; during evaluation, unassessed doc-

uments are still treated as irrelevant.

Cormack et al. (1998) propose a dynamic, relevance-greedy method of choosing

documents for assessment, called move-to-front (MTF) pooling. The submitted runs

are held in a priority queue, with the next document for assessment being the highest-

ranked, as-yet-unselected document of the highest priority run. If the selected docu-

ment is relevant, then that run’s priority is set to the maximum value; otherwise, the

run’s priority is decreased. Assessment effort is therefore focused on runs that return
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relevant documents more frequently. Cormack et al. find that MTF pooling locates rel-

evant documents at a rate over 50% higher than regular pooling, and as a result achieves

a stable system ordering with fewer assessments.

A more sophisticated algorithm is proposed by Aslam et al. (2003). They treat doc-

ument selection as an aggregation of expert opinion problem, with each retrieval system

as an expert. The next document to assess is the one that gets the strongest combined

recommendation from the systems, where the strength of each system’s recommenda-

tion is derived from the rank it returns a document, weighted by an estimate of the

system’s reliability. A system’s estimated reliability increases when it recommends

relevant documents, and decreases when it recommends irrelevant ones. Aslam et al.

demonstrate that their method finds relevant documents at a rate roughly 50% higher

than plain pooling; a direct comparison to the MTF method of Cormack et al. (1998)

is not given.

The interactive searching and judging (ISJ) method proposed by Cormack et al.

(1998) does away with submitted runs altogether. Instead, the assessor or assessors

actively seek out relevance judgments, through query reformulation performed on a

live search system. This process was used to form a manual TREC 6 AdHoc run,

which subsequent analysis showed to have located 59% of the officially relevant pooled

documents, though the ISJ assessors only regarded 71% of these as actually relevant.

The proportion of the documents located through ISJ which were relevant was 30%,

five times the density of the 6% for pooling. Controlling for assessor disagreement, the

ISJ qrels gave a Kendall’s τ of 0.96with the official qrels on system ranking, indicating

virtually identical rankings.

Having the assessor search for documents through explicit query reformulation is

arguably a confusion of roles, one liable to a narrow and biased interpretation of rel-

evance. An alternative is to use true relevance feedback, where the query is auto-

matically and iteratively extended, based on the relevance assessments made by the

assessor. The qrels for the 2003 Filtering track of TREC were created using itera-

tive true relevance feedback (Robertson and Soboroff, 2002; Soboroff and Robertson,

2003). To provide diversity, four retrieval systems were employed, with their rank-

ings merged, and the top hundred presented for assessment. The assessments were

then fed back into the relevance feedback system, and a new merged ranking produced

and assessed. The loop was repeated until no new relevant documents were found, or

five iterations had elapsed. An average of 433 documents were judged per topic, with

82 (19%) found relevant; in comparison, the TREC 8 AdHoc pool had an average of

1,763 document per topic, with 94 (5%) relevant. An additional round of pooled judg-

ing found more than fifty new relevant documents for only seven of the fifty topics.

Sanderson and Joho (2004) use only a single feedback system in the loop, with similar

results.

Moffat, Webber, and Zobel (2007) present methods for a range of strategic goals,

besides maximizing the relevance proportion. These methods are specific to the RBP

metric, and are built upon its monotonically decreasing error residual, described in Sec-

tion 3.2.3. Algorithms are provided for achieving three different strategic goals: min-

imizing the mean residual across systems; equalizing residuals between systems; and

dynamically weighting score residuals to achieve greater fidelity in separating high-

performing systems.

The relevance-greedy methods identify relevant documents more efficiently than

pooling, but they leave unaddressed the question of pooling bias, and potentially exac-

erbate it; the aggregation of expert opinion method of Aslam et al. (2003), for instance,

seems likely to bias assessments in favour of clusters of similar systems. Additionally,
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no matter how efficient the methods are, budget constraints mean that only a fraction

of relevant documents in very large contemporary collections can be assessed. The

sampling methods described next address the issue of bias, and require only a fraction

of the runs to be assessed.

3.4.5 Random sampling

In relevance assessment, we are faced with trying to determine a value (relevance)

over a large set of items, while only having the resources to examine a small subset of

the items. The standard approach to such problems is sampling, and it is natural that

sampling has been applied to score estimation in retrieval evaluation, too.

Yilmaz and Aslam (2006) propose the uniform random sampling of documents

from runs, up to evaluation depth. Calculating scores upon the assessed sample is

based on the key insight that an evaluation metric can be modelled as the expectation

of a random variable. For instance, precision at ten can be modelled as the expectation

of picking one of the top ten documents at random and assessing it for relevance. Av-

erage precision is more complex, because it is pairs of documents, not individual doc-

uments, that are scored; therefore, the sampling also has to be over pairs. But purely

paired sampling is inefficient, because pairings induced between documents from dif-

ferent sampled pairs are ignored (sampling ij and kl induces ik and jl). In practice,

the method is to sample documents individually, assess them for relevance, and then

treat the induced pairs as if they had been produced by a pairwise sampling method.

The uniform random sampling approach can be made more efficient. Intuitively,

greater sampling probability should be given to documents with more weight in the

metric, such as documents highly ranked by multiple systems. One also (perhaps less

intuitively) wants to give greater sampling probability to documents that are more likely

to be relevant. Such an approach is proposed by Aslam et al. (2006). Again, the au-

thors tackle the difficult case of estimating average precision, deploying an arsenal of

techniques for minimizing variance under unequal sampling (Thompson, 2002, Chap-

ter 6). Average precision weights pairs of ranks, so unequal sampling must be per-

formed on rank pairs. Sampling weights are combined from the full set of systems,

with values rescaled to fit each run’s distribution. A distribution over pairs is derived

from marginal distributions over single documents, to avoid losing induced document

pairs. A prior over probability of relevance is applied, itself based on average preci-

sion weights (Aslam et al., 2003). Finally, marginals for each ranking are averaged to

provide a marginal sampling distribution over all documents.

The complexity of the unequal sampling method discourages its use in practice,

and makes it difficult to apply where hybrid document selection methods are used or

more than one evaluation metric is employed. Instead, Yilmaz, Kanoulas, and Aslam

(2008b) propose a simpler method based on stratified sampling (Thompson, 2002,

Chapter 11). Different proportions are sampled from different strata of the document

rankings, using uniform random sampling within each stratum, and adjusting sampled

values to give an unbiased estimator. The stratified model supports in particular pool-

ing to a certain depth, and sampling beyond that depth. Again, adjustment of values

is complicated by the pairing of documents under average precision, and it is not clear

that Yilmaz et al. deal in a theoretically unbiased way with pairs of assessed documents

induced in one ranking because one or other of the pair have been pooled in another

ranking. Nevertheless, the resulting sampling method is flexible and straightforward.

Sampling requires that the full population be available for sampling from; in re-

trieval evaluation, that means all the runs that are to be evaluated. New systems can be



CHAPTER 3. TECHNICAL BACKGROUND 70

scored as if the assessed documents they return had been randomly sampled from their

runs (Yilmaz, Kanoulas, and Aslam, 2008b); the purported sampling, however, has not

in fact occurred, suggesting that the new system will still be biased against. The degree

of bias has not been determined; it seems plausible that the bias of sampling from a

pool is similar to the bias of full assessment of the pool.

3.4.6 Probabilistic delta determination

The sampling approach aims to estimate an absolute score. Frequently, though, the ex-

perimenter is more concerned with determining whether one system outscores another;

in other words, has a positive delta compared to it. Documents can be selected to max-

imize this delta. Assessment could continue until a positive delta was certain; but these

methods become much more efficient if joined with a probability of relevance model,

to calculate confidence in a positive delta.

The maximization of delta confidence is proposed by Carterette et al. (2006) in

their minimal test collection (MTC) method (see also Carterette and Allan (2005) for

an earlier, more heuristic approach). Different documents have different impacts on

score deltas between two rankings. If a document is returned at the same rank by both

rankings, then, under a rank-weighted metric such as RBP, its relevance can have no

impact on their delta. The situation under AP is, again, complicated by its scoring of

document pairs, but a similar logic applies. The first step of the MTC method is to

select the documents that have the greatest impact on score delta, and a deterministic

implementation of MTC would continue until it is certain that one system is better

than the other. For non-convergent metrics like AP, this involves the assumption that

evaluation is only carried out to a certain depth, as otherwise the tail always has infinite

potential weight.

As evaluation continues towards the point of certainty, it becomes increasingly

likely that one system is better than the other, and one would like to be able to cut

short the assessment once this likelihood had reached a certain level. To support the

calculation of this likelihood, Carterette et al. (2006) develop a model of the probability

of relevance for individual documents, from which they derive an estimator of the delta,

and a variance on that estimator. Their initial model is very simple: each unassessed

document has an independent 0.5 probability of relevance. Carterette et al. demon-

strate that, given this (unrealistic) probability assumption, AP is normally distributed,

allowing a confidence interval and achieved significance level to be calculated on the

delta. Thus, assessment need only continue until sufficient confidence is achieved.

Carterette et al. find that, given the above assumptions, a 95% confidence in a system

ranking (estimated as the average of the pairwise confidences) can be achieved with

around a tenth of the number of relevance assessments that a depth 100 pooling would

require.

A more realistic probability of relevance model is fitted to the MTC framework in

Carterette (2007). The new model is one of an aggregation of expert opinion, with the

retrieval systems as experts, and probabilities of relevance for each unassessed docu-

ments the output. A three-level logistic regression is performed. The first infers the

probability of relevance that a system is stating by returning a document at a given

rank; the second calibrates the stated probability of relevance by the system’s observed

reliability; and the third calculates an aggregated probability of relevance, weighted

by system correlations. The next document for assessment at each step is chosen ac-

cording to the delta-maximization principle, and the result of the assessment is used to

update the model. Carterette asserts that the updated method is robust for use on new
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systems, without additional assessment effort; the new runs can be fitted into the same

probability of relevance model, and an appropriate (non-zero) probability of relevance

assigned to their unassessed documents. Experimental evaluation demonstrates this

robustness, at least on the experimental data employed.

The updatedMTCmodel and an early variant of the sampling method of Yilmaz, Kanoulas, and Aslam

(2008b), called statMAP, were employed in the 2007 Million Query track of TREC

(Allan et al., 2007; Carterette et al., 2008). The two methods gave rankings similar to

each other, and to that produced by pooled assessments on older topics. The abso-

lute estimated MAP scores produced by MTC, though, were only a third of those for

statMAP or pooling. It seems that MTC is getting its absolute predictions of probabil-

ity of relevance wrong, even though the relative values may be correct. This suggests

a possible bias if one system in a pair happened to be fully assessed, and so required

no estimation. On the other hand, for the one system that MTC differed markedly

from statMAP and pooling on, a system which used the distinctive method of query

expansion via an external search engine (Webber, Anh, and Moffat, 2007a), additional

relevance assessments indicated that MTC was in the right, suggesting that it may be

more robust than the other methods.

3.5 Materials

The key experimental data for our investigations is provided by the TREC effort. An

historical overview of TREC has been given in Chapter 2. Here, we discuss the TREC

tracks, collections, and particularly runs in more detail.

3.5.1 The TREC effort

The TREC effort began in 1992, and is still running at the time of writing. The naming

convention for the annual efforts is inconsistent. From 1992 to 2000, each year’s TREC

is known by its number, TREC 1 through to TREC 9; then, starting in 2001, TRECs

started to be commonly referred to by their date, TREC 2001, TREC 2002, and so

forth; or, more briefly, TREC-01, TREC-02, and so on. While this convention is liable

to confuse, it is so deeply ingrained that we shall follow it here.

There are two parts to TREC: the annual conference itself, and the collaborative

retrieval experiments that lead up to it. The conference is held in November of each

year. Towards the beginning of the year, around March, the test corpus (if new) is

made available to participants. Topics are released around July, and runs are submitted

by participants a few weeks later. Relevance assessments are then performed on the

pooled runs, with results released in late September. Each year’s task involves a new

collection: either the topics or the corpus, or both, change. In a few cases, though,

where the corpus is the same, participants are asked to run their systems over previous

topic sets as well (Voorhees, 2004; Clarke et al., 2005). These instances are particularly

valuable for meta-evaluation: they create larger combined topic sets, as well as repeated

runs over earlier topic sets.

Proceedings, topics, qrels, and tools are freely available from the TREC website,

http://trec.nist.gov/. Runsets from participating groups are also available from

TREC, subject to a data usage agreement. The test corpora used in TREC collections

are typically distributed by third parties, but information on where to obtain them is

contained on the TREC site.

http://trec.nist.gov/
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The success of the TREC effort has inspired a number of other collaborative re-

trieval experiments. The NTCIR project (http://research.nii.ac.jp/ntcir/)

began in 1999, initially as a Japanese-language task but spreading to include other East

Asian languages and cross-lingual retrieval. The Cross Language Evaluation Forum

(CLEF, http://www.clef-campaign.org/) was founded in 2000, with a special

emphasis on multi-lingual, cross-lingual, and mono-lingual retrieval of European lan-

guages. The Initiative for the Evaluation of XMLRetrieval (INEX, http://inex.is.informatik.uni-duisburg.de/

launched in 2002, to work on the retrieval of semi-structured text. In 2008, the Forum

for Information Retrieval Evaluation (FIRE, http://www.isical.ac.in/~fire/index.html)

was initiated, with a focus on South Asian languages. In this thesis, though, we use the

TREC data exclusively.

3.5.2 TREC tracks and collections

The TREC effort began with two related tasks: the AdHoc and Routing tasks (Harman,

1992b). In the AdHoc task6, a topic is provided, and the system has to find doc-

uments relevant to that topic (Harman, 2005b). The Routing task involves a form

of batch document filtering: the system is provided with relevance judgments over

an existing corpus, and must identify similarly relevant documents in a new corpus

(Robertson and Callan, 2005). Starting with TREC 4 in 1995, additional tracks were

added to the TREC program, each dealing with a different retrieval environment or

problem. By TREC 2008, 28 different tracks had been run at TREC at one time or an-

other (Voorhees, 2007; Buckley and Robertson, 2008), although at no one TREC were

there more than nine tracks running concurrently.

The motivation for the different tracks beyond AdHoc are various. They can be

roughly categorized as:

• Different corpus types and sizes: Very Large Collection, Web, and Terabyte

(Hawking and Craswell, 2005; Clarke et al., 2004).

• Different retrieval modes: Routing, Filtering, Interactive, Question Answering

(Robertson and Callan, 2005; Dumais and Belkin, 2005; Voorhees, 2005c)

• Different natural languages: Spanish, Chinese, Cross-Lingual (Harman, 2005c)

• Different media: Confusion (OCR data), Spoken Document, Video (Voorhees and Garofolo,

2005; Smeaton et al., 2001)

• Specialized domains: Genomics, Blog, Enterprise, Legal (Hersh and Bhupatiraju,

2003; Ounis et al., 2006; Soboroff et al., 2006; Baron et al., 2006)

• Special retrieval aspects: Novelty, Robust, High Precision, Query, Million Query

(Harman, 2002; Voorhees, 2003; Buckley, 1997, 1998; Allan et al., 2007)

The retrieval type focused on in this thesis is ad hoc retrieval; that is, retrieval of

topically relevant text documents from a broad-domain corpus in response to one-off

user queries. The chief TREC tracks dealing with ad hoc retrieval are the AdHoc track

itself and the Robust track, which used the same corpus and many of the same topics;

and, to a lesser extent, the Web and Terabyte tracks. We describe these tracks next.

6The naming convention at TREC changed slightly. Up to TREC 4, the task was referred to as the “adhoc”
task, without a space; this is even footnoted in the overview to TREC 4 as the received TREC spelling. From
TREC 5 onwards, however, it is referred to as the “ad hoc” task, with a space. In this thesis, we will refer to
the task itself as the “AdHoc task”, and to the type of retrieval the task (and, say, the Robust track after it)
involved as “ad hoc retrieval”.

http://research.nii.ac.jp/ntcir/
http://www.clef-campaign.org/
http://inex.is.informatik.uni-duisburg.de/
http://www.isical.ac.in/~fire/index.html


CHAPTER 3. TECHNICAL BACKGROUND 73

AdHoc track

The AdHoc track ran from the first TREC 1 in 1992, to TREC 8 in 1999; it was then

discontinued, as it was believed that retrieval effectiveness on the task had plateaued

(Voorhees and Harman, 1999). The initial data corpus for the AdHoc track was the

2GB TIPSTER corpus (Harman, 1992b), known as TREC Disks 1 and 2. The corpus

was supplemented in later years with a further three disks of material, with old disks

being retired as new ones were added. From TREC 6, the AdHoc corpus settled down

to what are known as TREC Disks 4 and 5; the same corpus was used not only in

TREC AdHoc 6, 7 and 8, but also the TREC Robust track in 2003 and 2004. The

AdHoc corpora consist primarily of newswire data, with some other document types

included in earlier years (Harman, 2005a).

A new set of 50 topics was formed for each year’s AdHoc collection. The AdHoc

topics are numbered sequentially, starting with Topics 51–100 for TREC 1 (Topics 1–

50 were used for pre-TREC trials and training, and also in the Routing track in the

first year). The nature of the topics changed over time. Topics 51–150, from TRECs

1 and 2, are highly detailed, containing concept categories, term definitions, and lists

of topic factors. The topics were also designed to return a large number of relevant

documents, at least 25 based on an initial sample run (Harman, 1992b). It came to be

felt that these topics specified too much information and were not demanding enough,

and over time there was a conscious effort to make topics harder, in part by reducing

the amount of information contained in the topic statements. Topics 201–250 from

TREC 4 were reduced to single-sentence descriptions (Harman, 1995; Spärck Jones,

2000). By TREC 5, the format for AdHoc topics had settled down to title, description,

and narrative, as described below in Section 3.5.3.

Robust track

The next track of interest to the research described in this thesis is the Robust track,

run at TREC from 2003 to 2005. The purpose of the track was to increase the consis-

tency of system performance, by focusing on topics that the systems performed poorly

on (Voorhees, 2003). The track promoted work on query difficulty measurement and

prediction, and introduced the use of the geometric mean in score aggregation, in order

to emphasize the contribution of low-scoring topics.

The main attraction of the Robust track for meta-evaluation is its re-use of corpus

and topics from the AdHoc track. The TREC 2003 and TREC 2004 Robust collections

use the same document corpus as the TREC 6 through 8 AdHoc collections, namely

TREC Disks 4 and 5 (minus the Congressional Record sub-corpus). Furthermore, the

TREC 2004 Robust topic set includes the TREC 6 through 8 AdHoc and TREC 2003

Robust topics, in addition to its own new topics. This comes to a total of 249 topics on

the one document corpus, making it the largest fully-pooled topic set amongst TREC

collections. Care has to be taken, though, because the TREC 6 topic descriptions are

unusual in lacking title keywords and hence providing lower retrieval performance, and

also the Robust pools include a narrower range of automatic runs than the AdHoc pools,

and (aside from 2005) no manual runs at all. Nevertheless, the reuse of earlier topic

sets on the same corpus means that TREC 2004 Robust runs can be directly compared

to earlier TREC runs. These features enable a wealth of meta-evaluative experiments.
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Web track

TheWeb track ran from TREC 8 in 1999 through to TREC 2004 (Hawking and Craswell,

2005). Initially, the task was to run ad hoc style queries over web data (Hawking et al.,

1999). Topics statements followed the AdHoc form, although title-only queries were

emphasized as the only realistic queries for a web environment (Hawking, 2000). The

topical relevance model of ad hoc retrieval, though, came to be seen as unrepresentative

of much web search behaviour (Hawking and Craswell, 2005). In response, starting in

TREC 2001, the web-centric tasks of home page and named-page finding were intro-

duced (Hawking and Craswell, 2001; Craswell and Hawking, 2002). For these tasks,

only a single page is relevant; since this page is known in advance to the collection

creators, the relevance assessment of submitted results is unnecessary. In TREC 2002,

ad hoc retrieval was replaced by the topic distillation task, which was to find pages that

were not merely relevant, but which served as key resources or entries into relevant

sites (Craswell and Hawking, 2002; Craswell et al., 2003). Thus, concepts of docu-

ment quality and location in the link graph were introduced. The track continued in

this form until its cessation in 2004. It has recently been revived, with a much larger

collection, in 2009 (Callan and Hoy, 2009).

Terabyte track

The final track considered here is the Terabyte track, which ran from TREC 2004 to

TREC 2006. The corpus was a 426 GB crawl of the US government web domain. The

core task was topical relevance ad hoc retrieval; named-page and efficiency tasks were

also run.

One of the track’s central goals was to explore whether TREC-style evaluation

methods scale to terabyte-size collections; in particular, whether pooling is reliable

on such large collections (Clarke et al., 2004). Leave-one-team-out experiments (Sec-

tion 3.4.2) on the 2004 runs discovered an average drop of 9.6% in AP scores; for

2005, it was 3.9%, but one system still suffered a 17.7% fall (Clarke et al., 2005).

The frequency of query keywords in relevant documents was found to be significantly

higher than for the AdHoc and evenWeb collections, suggesting an increasingly narrow

and biased pool (Clarke et al., 2005; Buckley et al., 2007). In response, the selection

of documents for assessment in the 2006 track was performed by a mixture of stan-

dard pooling to depth 50, late pooling from depth 400 onwards, and random sampling.

Manual runs were also strongly encouraged, to increase pool diversity. Issues of in-

completeness, bias, and assessment efficiency were taken up the following year, on the

same corpus but with very different methods, as part of the new Million Query track

(Allan et al., 2007; Carterette et al., 2008).

The scale of the Terabyte collection, its focus on evaluation issues, and its inclusion

(unlike much of the Web track) of an ad hoc, topical relevance task, make it superfi-

cially attractive for our investigations. But the very fact that it is, almost by design,

highly incomplete, makes it less suitable for meta-evaluative studies, as establishing

the ground truth of full evaluation is more problematic. For these reasons, and be-

cause of the particular attractions of the combined late-AdHoc and Robust collections,

the AdHoc and Robust datasets form the backbone of our experimental structure here.

Unless otherwise noted, it is the features of these collections that are discussed in the

following sections.
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<top>

<num> Number: 408

<title > tropical storms

<desc> Description:

What tropical storms (hurricanes and typhoons) have

caused significant property damage and loss of life?

<narr> Narrative:

The date of the storm , the area affected , and the extent

of damage/casualties are all of interest. Documents that

describe the damage caused by a tropical storm as

"slight", "limited", or "small" are not relevant.

</top>

Figure 3.21: Topic statement from the TREC 8 AdHoc test collection.

3.5.3 TREC topics

The topics in the TREC AdHoc collections (from TREC-3 onwards) were formulated

by the same NIST assessors who subsequently performed the relevance assessments

for those topics. Assessors were asked to come up with a range of information needs

based on their own interests; these were then explored in the test collection, using a

NIST search engine, to ensure that each topic had some, but not too many, relevant

documents (Harman, 2005b).

Up to TREC 5, the fields of the AdHoc topic varied from year to year. From

TREC 5 onwards, they were standardized to the form illustrated in Figure 3.21. Aside

from the topic number, each topic has three fields: title, description, and narrative.

In earlier TRECs, the title field was simply a title. From TREC 6 onwards, the title

also served as a potential, keyword-based query. The description is a single-sentence

statement of the information need underlying the topic; the narrative expands upon

this information need, and specifies criteria for a document to be judged relevant or

irrelevant.

Submitted runs are divided into automatic runs, made without human involvement

in query formulation, and manual runs, made with such involvement. Queries for auto-

matic runs had to be extracted from one or more of the topic fields, and automatic runs

are sub-classified by the topic fields used. Common choices are title-only; description-

only; title and description; and title, description, and narrative. No training on test

topics that involved human assessments was permitted (NIST, 1999).

Manual runs, on the other hand, did permit human involvement. Initially, this was

restricted to manually-written queries. However, from TREC 5 onwards, no limits

were placed on the degree of human interaction in manual runs (Voorhees and Harman,

1996; Harman, 2005b). Query re-formulation based on iterative runs was a common

technique; and in at least one case, a manual run was constructed by privately as-

sessing retrieved documents for relevance, and hand-crafting the submitted rankings

accordingly (Cormack et al., 1998).
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Figure 3.22: Composition of official TREC runs by query type for TREC 1 through

TREC 8 AdHoc track, and TREC 2003 through TREC 2005 Robust track.

3.5.4 TREC runsets

The key part of each year’s TREC is the collaborative experiment. Guidelines differ

for different tracks; here, we describe those that applied to the AdHoc and Robust

tracks. Each participating research group was required to submit one or (typically)

more runs against that year’s test collection. The maximum number of automatic runs

a group could submit varied from 2 to 5, except for the TREC 2004 Robust track, in

which no limit was set, with one group submitting 11 runs. A run submitted to TREC

for evaluation contains one document ranking for each topic in the topic set. Docu-

ment rankings were generally made to depth 1,000. In the TREC 6 Robust track, each

group was required to submit at least one description-only automatic run, if they sub-

mitted any automatic runs at all (Voorhees and Harman, 1997); this requirement was

also enforced in the TREC 2003 Robust track (Voorhees, 2003). In TREC 8, the re-

quirement was for a title and description run (Voorhees and Harman, 1999), whereas

the TREC 2004 Robust track required both a title-only, and a title and description run

(Voorhees, 2004). Apart from that, groups were not constrained in what runs to submit;

commonly, though, the different runs from the one group were based on modified ver-

sions of the one system. In addition to automatic runs, manual runs were encouraged.

Importantly, the submitted TREC runs have been archived by NIST (apart from

TREC 1), and made available to researchers. The availability of this dataset has been

crucial in spurring research on evaluation over the past decade, and the dataset is core

to the experiments reported in this thesis.

Figure 3.22 shows the number and type of runs submitted to each TREC AdHoc

and Robust track. In some years, participants were permitted to run on a subset of

the corpus; these runs have been excluded. The variety in the composition of run

types is evident. The concept of using different topic fields for automatic queries was

introduced in TREC 5, and then expanded in following years. A significant number

of manual runs were submitted to each of the AdHoc tracks, but none for the first two

Robust tracks and only a handful for the third. Title-only runs began in TREC 6, and



CHAPTER 3. TECHNICAL BACKGROUND 77

make up a minority of runs until the TREC 2005 Robust track, even though from the

current perspective these might seem the most natural form of user queries.

3.5.5 TREC qrels

As emphasized in Section 3.4, creating the relevance assessments is the crucial task

of test collection construction. The method used for the TREC AdHoc and Robust

collections was pooling, described in Section 3.4.2. Pooling was performed to depth

100 for all tracks except for TREC 3 AdHoc (200), the new topics for TREC 2003

Robust (125), and TREC 2005 Robust (55, plus assessments from the parallel HARD

track) (Harman, 1994; Voorhees, 2003, 2005b). A certain number of runs from each

group, selected by the group itself, formed the pool. In the TREC 2003 and 2004

Robust tracks, assessment pools were only formed for the new topics; the old topics

reused the relevance assessments from the original collections.

One of the useful contributions of manual runs is the wide range of unique relevant

documents they uncover. In the TREC 7 AdHoc track, for instance, 24% of relevant

documents were included in the pool solely because they were returned by the 17 man-

ual runs, compared to just 9% solely by the 86 automatic runs. That these figures

show automatic runs to be almost redundant for pool formation, given a reasonable set

of manual runs, has not been lost on those seeking more efficient modes of pool cre-

ation, as we have seen (Cormack et al., 1998; Sanderson and Joho, 2004). Conversely,

where manual runs were not submitted, as for the TREC 2003 and 2004 Robust runsets

(see Figure 3.22), the depth and diversity of the set of pooled (and therefore assessed)

documents is open to question.

Relevance assessment for the TREC AdHoc and Robust collections was performed

by NIST assessors, who are predominantly retired intelligence analysts. For the Ad-

Hoc collections, relevance assessment was binary; that is, documents were assessed as

either relevant or irrelevant to a topic. The threshold for relevance was low: a docu-

ment was judged relevant if it contained any information that could be included in a

report on the topic (Harman, 2005a). For the TREC Robust collections (as well as for

the Web and Terabyte collections), a three-level relevance assessment scale was used:

irrelevant, relevant, and highly relevant (Voorhees, 2003; Hawking, 2000; Clarke et al.,

2004). These judgments are frequently converted to binary values, by treating both

relevant and highly relevant documents as (binary) relevant; this convention will be

followed in the experiments described later in this thesis.

Figure 3.23 displays the average number of documents per topic assessed relevant

and irrelevant in the TREC AdHoc and Robust test collections. The way the qrels

were formed varied in some years, affecting both the absolute number of judgments

and the proportion of documents assessed relevant. For instance, in TREC 3, pooling

was done to depth 200, rather than 100 (Harman, 1994); in TREC 5, a high proportion

of pooled systems ran on only a fraction of the corpus (so-called “Category B” runs),

pooling a disproportionate number of mostly irrelevant documents from this fraction

(Voorhees and Harman, 1996); while in TREC 2005, pooling was only to depth 55, but
also included runs from the quasi-feedback HARD track, leading to a higher proportion

of relevant documents (Voorhees, 2005b). Nevertheless, two important trends can be

noted. The first is the decrease in the number of relevant documents over the first

six years of TREC, the result of a deliberate policy to make the topics more difficult.

And the second is the much more superficial pools of the TREC 2003 and TREC 2004

Robust tracks, particularly in the number of relevant documents, caused a smaller mix

of participating groups, and especially by an absence of manual runs.
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Figure 3.23: Mean documents assessed relevant and irrelevant per topic for TREC 1

through TREC 8 AdHoc track, and TREC 2003 through TREC 2005 Robust track.

The variability in the number of relevant documents per topic within each collec-

tion is far greater than the variation between collections. This variability is plotted in

Figure 3.24 for the TREC 8 AdHoc Track collection; the figures for other collections

are similar. The mean number of relevant documents per topic for this collection is 95,

but the range is from 6 up to 347. This variation makes it difficult to meaningfully com-

pare scores between different topics. We explore this issue in more depth in Chapter 4,

where we propose the use of score standardization.
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Figure 3.24: Documents assessed relevant per topic in the TREC 8 AdHoc collection.
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3.6 Thesis plan

Chapter 2 provided an historical overview of information retrieval evaluation, describ-

ing its origins in the Cranfield experiments, the shift towards user studies in the 1970s

and 1980s, and the emphatic re-instatement of the system-centric methodology that

came with TREC. In this chapter, the technical foundation has been provided. We have

summarized the model underlying topical relevance evaluation using test collections,

and the methodology built upon this model (Section 3.1). Several metrics for evaluat-

ing retrieval effectiveness have been introduced, along with criteria for comparing them

(Section 3.2). Statistical methods, essential for summarizing, analyzing, and verifying

evaluation results, have been described, with a particular emphasis on tests of statisti-

cal significance (Section 3.3). The main issue in the construction of test collections is

how to perform relevance assessment in an efficient and unbiased way, and recent work

on the effect on assessment incompleteness and on alternative methods of assessment

selection has been summarized (Section 3.4). Finally, the TREC test collections and

runsets, which form core test data for the thesis, have been introduced (Section 3.5).

The historical and technical backgrounds having been filled in, the scene is set for

the presentation of the original contributions of the thesis. The variability in topic dif-

ficulty has been observed; this variability renders score comparisons unreliable and in-

exact, not only between topics, but also between collections. In Chapter 4, we propose

score standardization as a direct approach to balancing variability in topic difficulty.

Under standardization, the mean and standard deviation of the scores of a set of refer-

ence systems are observed for each topic. Future scores on that topic, and the scores

of the reference systems themselves, are then standardized by subtracting that mean

and dividing by that standard deviation. Between-topic variability is eliminated for the

reference systems, and greatly reduced for new systems, allowing scores to be directly

compared between different topics and different collections.

We have underlined the importance of testing the statistical significance of eval-

uation results. In planning an experiment, a researcher wants to be confident that a

practically important improvement in effectiveness is found to be statistically signif-

icant; otherwise, not only is an experiment wasted, but a valuable idea might be ne-

glected. The main factor under the experimenter’s control to boost significance is the

number of topics; but adding extra topics increases the expense of assessment. A simi-

lar question is whether existing test collections have enough topics in them to reliably

detect meaningful differences. Questions of this nature are addressed using the statis-

tical tool of power analysis. In Chapter 5, we introduce the use of power analysis in

deciding the necessary topic set size for an evaluation experiment, describe some of the

difficulties involved in deploying this tool in the retrieval evaluation setting, and pro-

pose pragmatic solutions to these difficulties. We also use power analysis to ask how

sensitive existing collections are to detecting differences in performance, concluding

that the standard TREC topic set size of 50 is sufficient only for detecting quite large

differences in retrieval effectiveness.

The problem of how to deal with assessment set incompleteness is a particularly

important one, given the increasing scale of test corpora and the need to find more

efficient ways of targetting relevance assessment effort. The traditional approach of

assuming unassessed documents to be irrelevant is biased against unpooled systems,

but the recently proposed alternative of removing unassessed documents from rank-

ings is biased in unpooled systems’ favour. In Chapter 6, we propose that the degree of

bias against an unpooled system be directly estimated, and scores adjusted accordingly.

Estimation can be done via a leave one out experiment on the fully-pooled systems, as-
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suming that the new system is similar in nature to the pooled ones. Or alternatively,

it can be performed by pooling the new and existing systems on a small set of com-

mon queries. Our proposed solution is particularly suitable for dynamic evaluation

environments, deployed over a regularly increasing set of test queries.

So far, we have only considered the comparison of document rankings by their

effectiveness scores. There are, however, many scenarios in which document rank-

ings can or must be compared without reference to relevance or effectiveness. Such a

comparison could be made as a cheap proxy for a much more expensive evaluation of

effectiveness; but it can also be made for its own reasons, for instance where a search

provider wants to monitor its rivals, or even itself, to measure the degree of change

in rankings over time. A number of similarity measures between rankings exist, such

as Kendall’s τ , but they do not deal with the particular needs of document ranking

comparison: specifically, top-weightedness, nonconjointness, and incompleteness. We

define rankings having these qualities as indefinite rankings, and in Chapter 7 we pro-

pose a new (and, we argue, the first suitable) indefinite rank similarity measure, called

rank-biased overlap (RBO). We demonstrate the usefulness of RBO in comparing doc-

ument rankings; indefinite rankings, though, are quite widely found, and we suggest

that RBO has a wider field of application than information retrieval alone.

We have seen in Chapter 2 that information retrieval evaluation has had a long his-

tory. The last two decades of this history have been dominated by the TREC effort,

and have seen a period of standardization and dissemination of TREC-style evaluation

methods. Such standardized methods and materials facilitate the improvement of in-

formation retrieval technology. They also allow us to ask whether information retrieval

technology has in fact been improving over the past decade or more, at least as em-

bodied in public research. This is the question we tackle in Chapter 8, first by looking

at the retrieval scores achieved at TREC over time, and then at the scores published

subsequent to TREC on TREC collections. We find that, in the AdHoc and subsequent

Robust Track, improvement in results appears to have plateaued quite early, perhaps

as early as TREC 3 in 1994. Similarly, in examining published results, we find few

systems outperforming the original TREC runs, and no evidence of an upwards trend

over time. These are interesting and concerning findings, and we examine a number of

possible explanations for them.

That the TREC methodology can be turned to critically analyze its own use by the

research community is a sign not of its weakness, but its strength, and indeed of the

rigour of the information retrieval community. The purpose of this thesis is to refine

the methods and extend the applicability of the TREC methodology: to give evaluation

scores some independence from collections and pairwise comparisons via standard-

ization; to encourage individual research groups to develop new, special-purpose test

collections by providing the tools of power analysis as a guide in experimental de-

sign; to make the TREC method more flexible in dynamic evaluation environments

through score adjustment for the compensation of evaluation bias; to add the similar-

ity comparison of document rankings as an adjunct tool to effectiveness evaluation;

and to emphasize the importance not just of rigorously evaluating retrieval effective-

ness in individual experiments, but tracking the effectiveness of retrieval technology

over time. Certainly, the topical-relevance test collection model needs to be extended

and supplemented to cope with the richer, more interactive, more complex world of

search and exploration on the web. But the enormous success of the TREC model, and

the prevalence of the methods it has popularized, suggests that extended or alternative

evaluation methodologies will not gain traction in the research community unless they

offer similar traits of automation, replicability, and rigour.



Chapter 4

Score Standardization

Test collections provide a means for measuring the effectiveness of retrieval systems.

Effectiveness is quantified, using an evaluation metric, as a score for each topic, and

then a mean score for the collection as a whole. These topic and mean scores by

themselves convey little information about system performance, however. They are

only informative when used to compare one system with another. The reason for this

lack of absolute meaning is that topics scores are highly variable, with some topics

receiving mean scores (across a set of systems) that are ten times that of others. In other

words, some topics are easy to achieve high scores on under a given metric, others hard.

The score that a system achieves on a collection depends, then, on how hard the topics

included in that collection are; and scores achieved on different collections cannot

usefully be compared. Additionally, the dispersion of scores differs between topics,

making some much more discriminative than others in practice, without it being clear

that they should be more discriminative in principle.

We have seen in Chapter 3 that some metrics, such as AP and nDCG, normalize

scores based on the number of relevant documents for each topic, thus making per-

fect scores at least theoretically obtainable. Normalization can be seen as a method of

addressing the variability in topic difficulty. It is, however, one that has limited suc-

cess, as will be seen. In this chapter, we present a more direct solution, that of score

standardization. The idea of standardization is to infer topic difficulty, not from the

number of relevant documents for the topic, but from the observed scores achieved on

the topic by a set of reference systems. Specifically, the mean and standard deviation of

the reference scores on the topic are taken as standardization factors. Scores for that

topic, both of the reference and of other systems, have the mean subtracted from them,

and are then divided by the standard deviation, to derive a standardized score.

Standardization greatly reduces topic variability. The standardized scores for differ-

ent topics have by construction the same mean and standard deviation for the reference

systems, and much diminished variance for non-reference systems, too, provided the

reference set is sufficiently representative. As a result, standardized scores carry more

information about system effectiveness than unstandardized ones, since the reference

points of average and exceptional performance are fixed. Moreover, standardization

substantially increases comparability between different collections. It is even possi-

ble to perform a significance test between the scores that one system achieves on one

collection and another system achieves on a different collection.

This chapter is laid out as follows. We begin in Section 4.1 by introducing the tools

of components of variance analysis, which are useful for analyzing and summarizing

81
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the variability of systems, topics, and interactions between them. In Section 4.2, we ex-

amine the nature and extent of inter-topic score variability, and the problems it causes

for the interpretation and comparison of effectiveness scores. Section 4.3 introduces

score standardization, and compares it with metric normalization, as described in Chap-

ter 3. In Section 4.4, we look at the simplest case, self-standardization, in which the

set of systems whose scores are standardized is the same set that the information used

to calculate the standardization factors is drawn from. Section 4.5 extends the analy-

sis to the case where the standardized and standardizing systems are different, while

Section 4.6 examines standardization’s claim to permit score comparison between dif-

ferent collections. Finally, the chapter concludes in Section 4.7 by exploring methods

for reducing the effect of outlier scores and the dependence of standardized scores on

the reference set.

4.1 Measuring score variability

A collaborative evaluation experiment such as TREC involves running a set of systems

against the one collection. The set of participant systems, S , is run against each topic

in the collection’s topic set, T . The document ranking produced by system s ∈ S
on topic t ∈ T is then scored by an evaluation metric, such as average precision, to

produce the system–topic score, Xst. If there are S = |S| participating systems, and

T = |T | topics, then the system–topic scores from the collaborative experiment can be

regarded as an S×T matrix. (One could also think of the k-depth rankings as forming

a three-dimensional array of S × T × k, which the evaluation metric reduces to two

dimensions.) LetM denote this score matrix. The system–topic scoreXst that system

s achieves on topic t is the element Ms,t, and the collection score Xs for system s is
the mean of its per-topic scores against each topic, Ms,∗.

The system–topic score Xst that system s achieves on topic t can be represented

by the following linear model:

Xst = µ+ νs + νt + νst . (4.1)

The value µ (read “mu”) is the mean across all systems and topics. Each ν (read “nu”)

is an effect: νs the system effect for system s, νt the topic effect for topic t, and νst
the system–topic interaction effect for system s on topic t. A positive νs indicates that
system s is strong, relative to other systems; a positive νt indicates that topic t is easy,
relative to other topics; and a positive νst indicates that the performance of system s on
topic t is high compared to other systems on this topic, or this system on other topics,

or both. Negative effects have the reverse meaning.

The system, topic, and system–topic interaction components each have a variance,

σ2(s), σ2(t), and σ2(st). (Note that s and t refer here not to a specific system or topic,

but to the variance over systems and over topics.) These variances sum to the total

variance of the system–topic scores in the runset:

σ2(Xst) = σ2(s) + σ2(t) + σ2(st) . (4.2)

The variances can be calculated from the mean squares of an ANOVA computation;

see Brennan (2001, Chapter 2) for details. We refer to this as a components of variance

analysis. Informally, σ2(s) expresses how much the systems differ from each other

in performance, σ2(t) how much the topics differ from each other in difficulty, and

σ2(st) how consistently topics score systems; a σ2(st) of 0 would, for instance, mean

that every topic ranks the systems in the same order.



CHAPTER 4. SCORE STANDARDIZATION 83

We can think of σ2(s) as the signal of the evaluation, separating out systems by

their true performance, whereas σ2(t) and σ2(st) are the noise, confusing the analysis

of absolute performance by topic-related effects. From these, we define two measures

of the reliability of topic scores. The first of these is the index of absolute comparabil-

ity, ϕ (read “phi”):

ϕ =
σ2(s)

σ2(s) + σ2(t) + σ2(st)
. (4.3)

The index ϕ measures the comparability of absolute scores; that is, the information

conveyed by the score alone, and the ability to compare scores between topics and

collections. The second measure is the index of relative comparability, ρI (read “rho”);

ρI =
σ2(s)

σ2(s) + σ2(st)
. (4.4)

The index ρI measures how comparable scores are on individual topics and within

the one collection. It does not include the topic variance component, σ2(t). When

comparing systems on the same topics, it is the score deltas that matter, and the score

deltas are not affected by changes in mean topic scores.

The indexes ϕ and ρI are similar to the measures Φ and Eρ2 from generalizability

theory (Brennan, 2001; Bodoff and Li, 2007). The difference is that the former two

are expressed per topic, the latter two over a certain number of topics. Increasing

the number of topics proportionally dampens the topic and topic–system interaction

effects. For instance, Φ, the index of dependability from generalizability theory, is

defined as follows:

Φ =
σ2(s)

σ2(s) + σ2(T ) + σ2(sT )

=
σ2(s)

σ2(s) + (σ2(t) + σ2(st)) /nt
(4.5)

where the capital T indicates that the variance is amortized over a number of topics, and

nt is the number of these topics. In this chapter, we work with the per-topic versions

defined above, to avoid the dependency on the number of topics.

4.2 Topic variability

Section 4.1 introduced summary statistics for analyzing the different components of

variance in system–topic scores. From the point of view of deriving reliable, absolute

scores, the most undesirable of these components is topic variance; it adds to score

variability but conveys no information about system performance. Topic variance—the

variance in mean topic scores—is, however, only one aspect of topic score variability.

There is also variability in the dispersion of scores, as measured by standard devia-

tion: for some topics, scores tend to cluster together, whereas for others, they are more

spread out. Topic scores also differ in the shape of their distributions: some topics

give balanced distributions, others give skewed ones. In the current section, we ex-

amine the symptoms of topic variability (Section 4.2.1), and describe its consequences

(Section 4.2.2).
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Figure 4.1: Intensity visualization of unstandardized AP scores from the TREC 5

Adhoc Track. The columns represent topics, ordered by topic number, and the rows

represent systems, in ASCII order of system name, from CLCLUS at the bottom to

vtwnB1 at the top. Each cell represents the AP system–topic score of a document

ranking. Lighter shades indicate higher scores. An equal number of scores are assigned

to each colour, such that white represents AP scores from 1 and 0.57, lightest grey from
0.57 to 0.38, and so forth, with black indicating scores below 0.0015. Although failed

systems are obvious, easy topics (light vertical stripes), such as Topic 253, stand out

more clearly than good systems (light horizontal stripes).

4.2.1 The incidence of topic variability

Visualizations provide an intuitive, high-level view of the patterns in a dataset. Fig-

ure 4.1 visualizes the AP scores achieved on the TREC 5 Adhoc Track topics by sys-

tems participating in that year’s track. The scores are represented as an S × T matrix,

in which topics are columns, systems are rows, and each cell represents a system–topic

score, with lighter cells indicating higher scores. The easy topics, those against which

systems generally achieve high scores, stand out strongly in the visualization, pro-

ducing vertical white lines. But good systems do not produce bright horizontal lines,

making them difficult to discern. Only the very worst systems, those that fail to find any

relevant documents for almost every topic, stand out as dark horizontal lines. This sim-

ple visualization illustrates an important point: a system–topic evaluation score holds

more information about the difficulty of the topic than it does about the quality of the

system.
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Figure 4.2: Kernel density estimates of AP scores for the (a) systems, and (b) topics,

at the first, tenth, twentieth, and seventy-fifth percentile (top to bottom in the legend)

when ordered by mean (a) system, or (b) topic, AP scores. Systems behave more like

each other than do topics. All data is from the the TREC 5 Adhoc Track.

The scores that system s achieves against the collection’s topic set constitute the

rowMs,∗ of the matrix visualized in Figure 4.1, and the scores that are achieved by the

set of systems against a topic tmake up the columnM∗,t. Each such row or column can

be treated as a distribution of scores. These distributions are displayed in Figure 4.2

for the first, tenth, twentieth, and seventy-fifth percentile topic and system from the

TREC 5 Adhoc Track, as ordered by topic or system mean AP score. The system
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System AP

ETHme1 LNmFull1 Cor5A1se anu5aut1

mean 0.317 0.282 0.206 0.154

st.dev 0.231 0.271 0.220 0.232

Topic AP

q276 q262 q277 q252

mean 0.771 0.506 0.175 0.056

st.dev 0.235 0.383 0.118 0.039

Table 4.1: Mean and standard deviation of AP scores for sample systems and topics

from the TREC 5 Adhoc Track. The kernel density estimates for the same data are

plotted in Figure 4.2.

Metric
TREC 5 AdH TREC 01 Web TREC 06 TB

s,ϕ t st ρI s,ϕ t st ρI s,ϕ t st ρI

AP 8 62 30 22 12 46 42 23 19 49 32 37

P@10 12 47 41 22 12 48 39 23 19 41 40 32

RBP.95 11 55 34 24 10 60 30 25 19 51 30 39

nDCG 16 55 29 36 18 44 38 33 30 41 29 51

Table 4.2: Variance components and comparability measures as percentages (%) for

different metrics and TREC runsets. The components are: s, system; t, topic; st,
system–topic interaction. The measures are the indexes of absolute (ϕ), and relative

(ρI ) comparability. Higher scores for these indexes mean greater comparability. The

percentages of the first three columns in each row of each block add up to 100, rounding
effects aside.

score distributions have a similar, right-skewed unimodal shape, similar dispersions,

and even relatively similar locations. The topic scores, in contrast, differ from each

other in shape, dispersion, and location.

Table 4.1 summarizes the locality and dispersions of the system and topic distribu-

tions plotted in Figure 4.2, in terms of their means and standard deviations. All systems

have similar standard deviations, and the mean of the best system is only twice that of

the seventy-fifth percentile. In contrast, topic means and standard deviations each vary

tenfold from seventy-fifth percentile to highest value. Thus, topic scores show much

greater diversity than system scores. The standardization transformation that we are

about to describe will fix dispersion and location; shape, though, will remain variable.

The variance components and reliability measures (Section 4.1) are displayed as

proportions in Table 4.2 for a number of different TREC runsets and metrics. For

AP, P@10, and RBP with p = 0.95, the proportion of score variance attributable to

actual differences in system performance is mostly around 10%, and always below

20%. The nDCG metric performs noticeably better, but its maximum system effect is

30%. The proportion of variance due purely to topic effects is always above 40%, and

reaches as high as 60%. That is, around half the variance in individual system–topic
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Systems
Significance test

Paired Two-sample

All 0.636 0.364

Auto 0.495 0.130

Table 4.3: Proportion of system pairs from the TREC 5 Adhoc Track found to have

significantly different average precision at α = 0.05 in a two-tailed t test, either paired
or two-sample, and including either all 61 systems or only the 28 automatic systems

scoring more than 0.05.

scores is attributable purely to differences in topic difficulty, another third or more

to peculiar interactions between topics and systems, and a fifth or less to consistent

differences in system performance. As a result, the reliability of the absolute scores,

as measured by ϕ, is around half that of the relative scores, as measured by ρI . These
are, admittedly, figures for individual topics; where scores are averaged across n topics,

each of the topic and system–topic variance components will reduce by 1/n (refer back

to Equation 4.5). Even so, for the typical 50-topic TREC collection, some 10% of the

variance in mean system scores is due to factors other than system performance.

4.2.2 The impact of topic variability

The variability in topic difficulty observed in Section 4.2.1 has several effects. One is

to make two-sample significance tests much weaker than paired significance tests. A

second is that confidence intervals on mean system scores are very wide, indicating

the weak information that a mean score provides. These two problems mostly concern

comparisons between test collections; a third, though, applies even within test collec-

tions, and that is that individual topics have different impacts on mean score deltas. We

discuss these issues in turn.

The first effect of high topic variability is that two-sample tests achieve far fewer

significant findings than paired tests (Section 3.3). Using a two-sample test, as if the

systems were run on distinct topic sets, is strongly subject to topic variance. This vari-

ance is controlled in paired tests by taking paired system score deltas. Table 4.3 con-

trasts the proportion of the 1,830 system pairs, between each of the 61 the TREC 5 Ad-

hoc Track systems, that are found significantly different under paired and two-sample

t tests. The paired test finds significance for almost two-thirds of system pairs, but

only a little over a third for the two-sample test. If the mostly high-performing manual

runs are removed, as well as four faulty systems scoring below 0.05 (two of which

are manual, two automatic), then the outcome is even more marked. Half of the 378
pairings between the 28 remaining automatic systems are found significantly different

by the paired test, but only one eighth by the two-sample test. These results illustrate

the difficulty of comparing scores between collections (even similar ones), where the

paired test cannot be employed.

Figure 4.3 displays another effect of high topic variability. Here, 95% confidence

intervals have been plotted on the “true” mean system AP scores of the TREC 5 Adhoc

Track systems. These confidence intervals are related to (though not identical with)

the results of a two-sample significance test. The intervals on the scores are wide,

leading to high degrees of overlap. The lower bound of the first system overlaps with

the upper bound of the median (thirty-first) system, and the mean score of the median
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Figure 4.3: The 95% confidence intervals on mean AP scores for the TREC 5 Adhoc

Track systems, using a t distribution. Systems are ordered by their mean AP score.

The first, tenth, twentieth, and seventy-fifth percentile systems (previously reported

in Figure 4.2) are labelled. The lower bound of the first system and the mean of the

median system are marked with horizontal lines.

system overlaps with the bounds of the ninth at one end, and the fifty-first at the other.

One way of interpreting these values is as the range of mean scores the systems could

achieve on equivalently sampled collections. The width of these intervals underlines

the weak information that a system score, quoted in isolation, conveys. A mediocre

automatic system on an easy collection—that is, a collection that (by chance) consists

of easy topics—can outscore a top-class manual run on a hard collection.

Even for evaluation on the one test collection, topic variability causes distortions.

Consider Table 4.1 again. The standard deviation of system AP scores for Topic q262

is ten times that for q252 (0.383 to 0.039). Topic q262 therefore has on average ten

times the impact on the mean score delta between any two systems as Topic q252. It

happens that Topic q262 has the highest standard deviation in TREC 5; but even the

twenty-fifth percentile topic by deviation has two and a half times the standard devi-

ation of the seventy-fifth percentile topic (0.170 against 0.067). It might be supposed

that, for whatever reason, higher variance topics are more discriminating than lower

variance topics. But the item–total correlation (that is, how reliably an item score

reflects overall performance) (Bodoff and Li, 2007) between individual and aggregate

topic scores is not significantly greater for high-variance topics than for low ones. The

Pearson’s correlation between item–total correlation and standard deviation under AP

for TREC 5 is 0.277 for all runs, and 0.091 for non-faulty automatic runs; neither cor-

relation achieves significance at level α = 0.05. Although high variance topics have

greater influence on system mean AP scores and on paired significance tests, they are

not inherently more reliable. Their greater influence is neither deserved nor desirable.
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4.3 Score standardization

One approach to controlling variability in topic difficulty has already been presented

in Section 3.2.4, namely score normalization. Under normalization, a system’s topic

score is divided by the topic’s maximum score, derived from R, the number of relevant

documents for the topic. Let rt be the maximum score achievable for a topic, and Xst

the unnormalized score that a run achieves on that topic; then the normalized scoreX∗
st

for that run is:

X∗
st =

Xst

rt
(4.6)

Average precision is an implicitly normalized metric, normalized discounted cumula-

tive gain an explicitly normalized one. Table 4.2 indicates that normalization does a

poor job of reducing topic variability for AP, and a better but still incomplete job for

nDCG.

A more direct method for controlling topic variability derives from the observation

that, since the problem is that different topics have different score means and stan-

dard deviations (as in Table 4.1), then the solution is to adjust topic scores so that

means and standard deviations are the same for each topic. If a topic t produces

a score mean of µt = M∗,t and a score standard deviation of σt = sd(M∗,t) =

(1/S)
∑

s

√

(Ms,t − µt)2, and if a run s receives the unadjusted score of Xst for

topic t, then the adjusted score X ′
st for that run is:

X ′
st =

Xst − µt

σt
(4.7)

Such a value is known as a z score, and the process of deriving it is called standard-

ization (Hays, 1991, Chapter 4). (In the unusual case that all reference systems receive

the same score, so that σt is 0, then we set X ′
st to 0, too.)

Standardization factors must be calculated across a set of reference systems that

are run and evaluated against a collection. For instance, the systems participating in

a TREC track might form the reference set for that track’s collection. It is important

to distinguish between standardization’s effect on reference and on non-reference sys-

tems. Standardization directly controls topic variability for reference systems, taken as

a set; it reduces the topic variability of non-reference systems, provided this variability

is similar to that of the reference systems. These questions are examined experimen-

tally in Section 4.5.

Standardization relies on there being an original retrieval experiment, whereas nor-

malization could theoretically be performed in the absence of such an experiment, if

documents for relevance assessment were chosen some other way. In fact, though,

pooling experimental systems is the predominant method of forming qrel sets. There-

fore, the requirements for standardization are in practice no greater than for normaliza-

tion. How many experimental systems are required to derive reliable standardization

factors, and how durable these factors remain over time, are considered in the Sec-

tion 4.5; the same questions also apply to normalization, as is observed in Section 4.6.

Standardization and normalization are alternative methods of controlling topic score

variability; either can be applied to most raw retrieval metrics. Standardization of nor-

malized scores, though, is identical to standardization alone, as we proceed to prove:

Proposition 4.1 Standardization of a normalized score gives the same numerical value

as standardization of a raw score.
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Proof. As shown in Equation 4.6, normalization involves dividing each raw score Xst

achieved on a topic by the maximum score rt achievable for that topic. Then, from

Equation 4.7, the standardized normalized score is:

X∗
st

′ =
(Xst/rt)−

∑S
i=1 (Xit/Srt)

√

1
S

∑S
j=1

(

(Xjt/rt)−
∑S

i=1 (Xit/Srt)
)2

= X ′
st . (4.8)

�

The three choices for a base metric are therefore its raw form (for instance, DCG); its

normalized form, denote by the prefix “n-” (for instance, nDCG); and its standardized

form, denoted by the prefix “s-” (for instance, sDCG). This means that, since AP is

normalized SP (nSP) (as shown in Section 3.2.4), standardized AP or sAP is the same

as standardized SP or sSP. Since AP is familiar, and nSP is not, we will adopt the

former usage here, making for AP the triplet of SP, AP, and sAP (corresponding, for

instance, to DCG, nDCG, and sDCG). Note that sAP can be calculated without needing

to know or estimate R, the number of relevant documents.

A standardized distribution has the same shape as the unstandardized one; stan-

dardization only affects locality and dispersion. After standardization, the mean score

M
′

∗t for each topic across the reference systems is zero, and the standard deviation is

one. There are no absolute upper or lower bounds on standardized scores, but Cheby-

shev’s inequality guarantees that at least 75% of standardized scores for a topic will be

between −2.0 and 2.0, and in practice the proportion is much higher; for AP on the

TREC 5 Adhoc Track, it is 96%, close to the proportion for a normal distribution. The

finite size n of the reference set places a practical bound of ±
√
n− 1 on standardized

reference scores, occurring when n− 1 reference systems achieve the same score, and

the nth one receives a different one (see Section A.1.1 for a proof). Thus, the impact

of any one topic on a reference system’s score is constrained. A non-reference system,

however, can achieve a score beyond this bound. This issue is examined empirically

in Section 4.5, and some methods for controlling outlier scores are suggested in Sec-

tion 4.7.

Table 4.4 shows the unstandardized and standardized AP scores for the topics and

systems used as illustrations in Section 4.2. The unstandardized scores are difficult to

interpret and compare. For example, ETHme1 scored 0.344 for Topic q277 and 0.500
for Topic q262; but does the latter score represent a better result than the former, or

was it simply an easier topic? Similarly, Cor5A1se scored 0.2 higher than anu5aut1

on Topic q277, but 0.08 lower on Topic q252; is the former result more compelling

than the latter? In contrast, the standardized results are directly informative. A positive

score indicates the run outperformed the reference mean for that topic, a negative score

that it underperformed it; a score of 1.0 means the run is one standard deviation above

the mean, and so on. So, without examining any other figures, we can immediately see

that anu5aut1 has done well on topic q252 with its standardized score of 1.340, and
Cor5A1se poorly on topic q262 with −1.277.

4.4 Standardizing reference systems

In this section, we examine the effect of standardization on reference systems and

within the one collection. The distribution and variance characteristics of standard-

ized scores are investigated first, followed by the effect of standardization on sig-

nificance tests and confidence intervals. Section 4.5 examines the standardization of
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Topic
Unstandardized AP

ETHme1 LNmFull1 Cor5A1se anu5aut1

q276 0.968 1.000 0.615 0.814

q262 0.500 0.950 0.017 1.000

q277 0.344 0.301 0.256 0.059

q252 0.045 0.058 0.030 0.109

Topic
Standardized AP

ETHme1 LNmFull1 Cor5A1se anu5aut1

q276 0.840 0.975 −0.667 0.180

q262 −0.015 1.161 −1.277 1.291

q277 1.434 1.067 0.689 −0.985
q252 −0.275 0.059 −0.665 1.340

Table 4.4: Selected topics from the TREC 5 Adhoc Track, and selected system AP

scores, before and after standardization, where the reference set is the full set of

TREC 5 systems. The standardization factors µt and σt for these four topics are the

mean and standard deviation values in the bottom section of Table 4.1.

non-reference systems, and Section 4.6 looks at the application of standardization to

cross-collection comparisons.

4.4.1 Characteristics of standardized scores

We start by comparing the system rankings produced by unstandardized and standard-

ized scores. Figure 4.4 compares the mean standardized and unstandardized system

AP scores for the TREC 5 AdHoc Track. The two metrics correlate closely, with a

Pearson’s r of 0.985, and a Kendall’s τ of 0.903. By way of comparison, the corre-

lation of nDCG with mean (unstandardized) AP is r = 0.973 and τ = 0.915. The

difference between the standardized and unstandardized variants of a single metric is

similar to that between one unstandardized metric and another. Standardization does

cause some local perturbations in the ranking, as it equalizes the score variability of

different topics. These perturbations may represent improvements, if we accept the

thesis that topics should have similar impacts.

Next, we examine the effect that standardization has upon the overall distribution

of scores. Figure 4.5 shows the distribution of system–topic unstandardized and stan-

dardized AP scores across all TREC 5 AdHoc systems and topics. The raw AP scores,

shown in part (a), are heavily skewed towards lower values, with half of the per-run

scores being below 0.1. As the raw score intensities in Figure 4.1 and the analysis of

topic variance in Section 4.2.1 suggest, the tail of high system–topic scores is caused

by a few exceptionally easy queries, not a few exceptionally strong systems. The stan-

dardized values, shown in part (b), are clustered around their mean of 0, with a skewed
bell-curve shape, inherited from the raw scores: a slight majority of values (57%) are

below 0 (the median is −0.2), but there are a few (10 out of 3,050) outlier values
above 4. The distribution of standardized scores diverges from normality, but normal-

ity of distribution is not a goal of standardization: as mentioned before, the topic score
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Figure 4.4: Mean unstandardized AP and mean standardized AP scores for the TREC 5

Adhoc Track systems, with the line of best fit, which has slope 7.9 and intercept −1.5.
The Kendall’s τ correlation is 0.903; Pearson’s r is 0.985.

distributions maintain their (mostly skewed) original shapes, changing instead their

locality and dispersions. Nevertheless, Figure 4.5 is suggestive of a more balanced

distribution of scores after standardization than before.

The distribution of standardized scores across the S × T matrix of system–topic

results is illustrated in Figure 4.6; this should be compared with the distribution of un-

standardized scores shown in Figure 4.1. As expected, easy topics have disappeared:

there are no vertical white lines. As with unstandardized scores, weak systems still

stand out; but now, strong systems are also visible, as predominantly (but not entirely)

light horizontal lines. We can easily make the judgment from this illustration that, even

in relative terms, no system is good at all topics. Moreover, there is a visible clus-

tering effect amongst systems, resulting from the alphabetical ordering of system IDs,

which places runs submitted by the same group next to each other; different families

of systems excel at different groups of topics. One question which jumps out of this

visualization is how to combine the complementary strengths of the two University of

Waterloo systems (third and fourth from the top) with those of the four Lexis-Nexis

systems (eighteenth through twenty-first from the bottom) (though admittedly these

are all manual runs). This simple visualization illustrates the richness and depth of

comparisons that score standardization enables within a set of runs.

We observed in Table 4.2 that the topic variance component made up as much as

60% of the variance of system–topic scores. Table 4.5 reports the variance components
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Figure 4.5: Distribution of system–topic (a) AP, and (b) standardized AP, scores for the

TREC 5 Adhoc Track systems. The 3,050 scores achieved by the 61 TREC 5 systems

against the 50 topics are summarized. The reference set for the standardized scores are

the 61 TREC 5 systems themselves.

Metric
TREC 5 AdH TREC 01 Web TREC 06 TB

s,ϕ,ρI t st s,ϕ,ρI t st s,ϕ,ρI t st

sAP 29 0 71 28 0 72 39 0 61

sP@10 22 0 78 25 0 75 32 0 68

sRBP.95 29 0 71 30 0 70 41 0 59

snDCG 38 0 62 35 0 65 54 0 46

Table 4.5: Variance components and reliability measures as percentages (%) for differ-

ent standardized metrics and TREC runsets. The components are: s, system; t, topic;
st, system–topic interaction. The measures are the indexes of absolute (ϕ) and relative
(ρI ) comparability. The percentages in each row of the three columns of each block

add up to 100, rounding effects aside. Compared to Table 4.2, topic variance (t) has
been redistributed as system (s) and system–topic interaction (st) variance.

of the TREC 5 scores for four common metrics after standardization. As anticipated,

the topic component of variance has been eliminated in all cases. The removed topic

component is more or less proportionally shared by the system and system–topic inter-

action effects. As a result, the index of absolute comparability, ϕ, which is equivalent

to the proportional s component, doubles or even triples; standardization causes a dra-

matic increase in absolute score dependability. In addition, since the topic variance

component has been eliminated, ϕ is identical to the index of relative comparability

ρI , meaning that absolute scores are as reliable as relative ones. The effect of stan-

dardization on relative score reliability is much smaller; still, the ρI scores here are in

general slightly higher than, and never below, those for unstandardized scores, given in

Table 4.2. This suggests that even within the one collection, relative scores are slightly

more reliable (or at least more consistent) under standardization; this question is dis-

cussed further in Section 4.7.
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Figure 4.6: Intensity visualization of standardized AP scores from the TREC 5 Adhoc

Track. The columns represent topics, ordered by topic number, and the rows represent

systems, in ASCII order of system name, from CLCLUS at the bottom to vtwnB1 at

the top. Each cell represents the standardized AP (sAP) score of a single run. Lighter

shades indicate higher scores. An equal number of scores are assigned to each colour,

such that white represents sAP scores above 1.34, lightest grey scores from 0.89 to

1.34, and so forth, with black indicating scores below−1.07. Good systems (light hor-

izontal stripes) stand out more clearly than for the unstandardized scores in Figure 4.1,

and there are no easy queries (light vertical stripes).

4.4.2 Standardization, significance, and confidence

We saw previously, in Table 4.3, that the topic variance of unstandardized metrics

makes two-sample significance tests much weaker than paired tests, and hence tests

between collections much weaker than within collections. In contrast, Table 4.6 shows

that standardization, by reducing topic variance, gives the two-sample significance test

a discriminative power almost equal to that of the paired test—as it to be expected

when ϕ = ρI (absolute and relative comparability are the same). The level of agree-

ment between the two is also high; the overlap (number of system pairs that both find

significant divided by the number of system pairs that either finds significant) is 0.9 for
the full system set, which is acceptable given the p = 0.05 significance level. These

results show that under standardization, significance tests between collections poten-

tially approach the power of those within the one collection, provided the collections

are similar in makeup. (Inter-collection tests are explored directly in Section 4.6.) In
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Systems
Significance test

Paired Two-sample

All 0.683 +0.047 0.683 +0.319

Auto 0.561 +0.066 0.542 +0.412

Table 4.6: Proportion of system pairs from the TREC 5 Adhoc Track found to be

significantly different using standardized AP at p = 0.05 in a two-tailed t test, either
paired or two-sample, and including either all 61 systems or only the 30 automatic

systems minus the 4 faulty ones with MAP < 0.05. The improvement over the results

with unstandardized AP reported in Table 4.3 is shown in italics.
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Figure 4.7: The 95% confidence intervals on mean standardized AP scores for the

TREC 5 Adhoc Track systems, using a t distribution. Systems are ordered by their

mean standardized AP scores. The first, tenth, twentieth, and seventy-fifth percentiles

systems by AP (not necessarily sAP), previously reported in Figure 4.2, are labelled.

The lower bound of the first system and the mean of the median system (by sAP) are

marked with horizontal lines.

addition, for this evaluation environment at least, standardization also boosts the dis-

criminative power of the paired test. This result suggests that standardization may also

help to regularize per-topic score deltas between systems, making significance tests

more reliable. See, however, the study of Voorhees (2009b), which failed to confirm

this effect for standardization. More work is required in this direction.

Weak two-sample tests bring with them wide confidence intervals on true mean

scores, and thus uninformative absolute scores; standardization’s strengthening of two-

sample tests should mean less overlap in intervals and more informative absolute scores,

and Figure 4.7 demonstrates that this is indeed the case. The figure displays the 95%

confidence intervals on the mean standardized AP scores for the TREC 5 Adhoc Track

systems. These intervals overlap considerably less than for unstandardized AP (Fig-

ure 4.3). Before standardization, the top system’s confidence interval overlapped with
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Collection AP, T03.rob

– T04.rob
T6.adh T7.adh T8.adh T03.rob

Pearson’s r 0.997 0.999 0.999 0.995 0.943

Kendall’s τ 0.945 0.965 0.971 0.935 0.742

Table 4.7: Pearson’s r and Kendall’s τ correlations, on overall system orderings under

standardized AP, for TREC 2004 Robust track systems on each of the earlier sub-

collections. The comparison is between standardizing based on the original experi-

mental systems and on the TREC 2004 Robust track systems themselves. As a ref-

erence point, the rightmost column gives the correlations between the ranking of the

TREC 2004 Robust systems using unstandardized AP between the TREC 2003 Robust

and TREC 2004 Robust sub-collections.

the median’s; after standardization it is well clear by the twelfth system. Similarly, the

median (thirty-first) system without standardization overlapped the ninth and fifty-first

systems; with standardization, the range has halved to the nineteenth system at one end,

and the fortieth at the other. It can be observed from the confidence intervals displayed

in Figure 4.7 that, for instance, the standardized AP score for ETHme1 is 1.28±0.37, for
LNmFull1 0.61± 0.18; from this, it can immediately be inferred that the two systems

are significantly different (as indeed they are, at the α = 0.01 level). The two systems’

unstandardized mean AP score ranges of 0.32 ± 0.07 and 0.28 ± 0.08 are much less

informative. In fact, a paired test on unstandardized scores narrowly fails to find signif-

icance; this is one of the cases where standardization has increased the discriminative

power of paired tests.

4.5 Standardizing non-reference systems

So far, we have examined the situation in which the set of systems whose scores are

standardized is also the set of reference systems, from which the standardization factors

are drawn; that is, the system set is self-standardized. Such a scenario would apply to

the original collaborative experiment in which a test collection is created. But the

collection will then be re-used for many subsequent experiments. How reliable are the

original standardization factors when used on new, non-reference systems?

The TREC effort has produced a data set well-suited for such experiments: the

TREC 2004 Robust test set. As described in Section 3.5.2, the TREC 2004 Robust

collection uses the same corpus, and includes the same topics, as the TREC 6, 7, and 8

AdHoc and TREC 2003 Robust tracks. (The TREC 6 sub-collection has an impor-

tant peculiarity: the “description” component of many topics do not include all query

keywords, leading to anomalously low scores for description-only runs.) Thus, each of

these earlier sub-collections has two sets of runs against it: the original runs made at the

time of the initial experiment, and the runs made in 2004 as part of that year’s Robust

track. We use this runset extensively in Section 4.6 for cross-collection comparisons;

here, it is employed to investigate the reusability of standardization factors within the

one collection.

The first question is how much of a difference the choice of reference systems

makes on the outcome of standardization. This is explored by comparing the use of

the original and the TREC 2004 runsets as reference sets for each of the pre-2004
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Metric
Unstandardized Self-std. Orig-std.

s,ϕ t st ρI s,ϕ,ρI t st s,ϕ t st ρI

AP 7 66 27 20 25 0 75 20 10 70 22

P@10 4 60 36 11 12 0 88 10 8 82 11

RBP.95 5 66 29 14 18 0 82 15 8 77 16

nDCG 13 59 28 32 37 0 63 32 7 61 34

Table 4.8: Variance components and reliability measures as percentages (%) for differ-

ent metrics and standardization types on the TREC 2004 Robust runsets, over Topics

301–450 and 601–650. The first block are unstandardized scores. In the second, scores
are standardized by the TREC 2004 Robust runs themselves. In the third, scores are

standardized by the original runsets for the TREC 6 through 8 and TREC 2003 sub-

collections. The components are: s, system; t, topic; st, system–topic interaction. The

measures are the indexes of absolute (ϕ) and relative (ρI ) comparability. The percent-

ages of the first three columns in each row of each block add up to 100, rounding effects
aside.

sub-collections. We standardize the TREC 2004 runs on these sub-collections with

the original runsets as reference systems on the one hand, and with the TREC 2004

runsets themselves as reference sets on the other. Table 4.7 gives the Pearson’s r and

Kendall’s τ correlations between the standardized AP scores of the TREC 2004 sys-

tems under the two reference sets. The minimum r is 0.995; the minimum τ is 0.935.
These correlations indicate near-equivalent rankings, even for the anomalous TREC 6

AdHoc collection. In comparison, ranking the TREC 2004 systems using unstandard-

ized AP on the TREC 2003 Robust and TREC 2004 Robust sub-collections gives a

Pearson’s r of 0.943, and a Kendall’s τ of 0.742. The latter figures indicate the no-

ticeably different rankings that different sub-collections produce, even using the one

metric. Standardization using different reference systems is thus far more reliable than

evaluation using different topic sets.

The question of the re-usability of reference standardization factors can be further

investigated by analyzing the components of variance. The analysis is run over the

TREC 6 through TREC 8 AdHoc and TREC 2003 Robust sub-collections. Compo-

nents of variance are calculated on the TREC 2004 Robust runset for three score types:

the unstandardized scores; the scores self-standardized by the TREC 2004 runs; and the

scores standardized by the original runset for the year the sub-collection was originally

formed. The results are shown in Table 4.8. As before, the topic effect is very strong

for the unstandardized scores, as much as two-thirds of the variance; and the topic

effect is eliminated for the self-standardized score, with its variance split proportion-

ately amongst the system and system–topic interaction components. Again, the index

of absolute comparability, ϕ, increases greatly with standardization, and the index of

relative comparability, ρI , very slightly, with the two being equal for self-standardized

scores. The stronger system effect achieved by nDCG is once more notable. Switching

to the original runsets as the reference set for standardization (shown in the rightmost

block of Table 4.8) leads to the re-appearance of the topic effect. This means that the

standardized TREC 2004 systems as a group find some topics easier, others harder,

than the original runsets did. The re-appearing topic effect is still less than the sys-

tem effect, though, and is only a seventh of the unstandardized topic effect. Absolute

comparability (ϕ) is still much higher than for unstandardized scores, and even relative
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Figure 4.8: Percentiles of Kendall’s τ between rankings on partial and full standard-

ization system sets, using standardized AP. The test collection and standardization

systems are from the Robust track of TREC 2003; the evaluated systems are those sub-

mitted to the Robust track of TREC 2004, scored against the TREC 2003 topics. There

were 2,000 random samples made for each sample size. The full standardization set has

78 systems. The Kendall’s τ between the TREC 2003 and TREC 2004 sub-collections

on unstandardized AP (τ = 0.742), and between unstandardized and standardized AP

on TREC 2003 (τ = 0.888), are also shown; the latter standardized AP scores are

TREC 2004 runs standardized with TREC 2003 systems.

comparability (ρI ) continues to receive a marginal benefit in most cases. Where the ref-

erence set is as broad and diverse as those found in TREC experiments, standardization

factors demonstrate considerable re-usability.

The reference systems can be considered as a (hopefully representative) sample of

the full “population” of retrieval systems. Therefore, the standardization factors de-

rived from the reference systems can be taken as estimates of the population (or “true”)

factors. A natural question then is how many systems are required to derive reliable

standardization factors. We measure this as the correlation between the system ranking

obtained with the full reference set on the one hand, and the system ranking obtained

from a sub-sampled reference set on the other. (Note that the full qrel set is used in all

cases; the effect of reducing the number of pooled systems is not examined.) The sys-

tems are the TREC 2004 runs, ranked on the TREC 2003 topics, using the TREC 2003

systems as the reference set for standardization; thus, the standardized and reference

sets are distinct. The procedure is to sample from the reference systems; derive stan-

dardization factors from the sample; use these to standardize the scores of the evaluated

systems; and calculate the Kendall’s τ between the system ranking from the sampled

standardization and from the full standardization. This is repeated multiple times for

each sample size. The 50th (median), 95th and 99th percentile lowest Kendall’s τ fig-

ures are recorded. The whole process is then repeated for other sample sizes. Figure 4.8

reports the results as a function of varying sample set sizes, using standardized AP; the

unstandardized inter-collection and standardized to unstandardized intra-collection τ
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are also given for comparison. On the line plotting the median correlation over the

2,000 samples, a set of as few as 5 reference systems gives ranking stability equivalent

to the standardized–unstandardized comparison, though an unlucky choice of refer-

ence systems gives much less reliability, as the 99th percentile shows. Achieving the

equivalent of standardized–unstandardized stability requires 10 reference systems at

the 95th percentile, and 20 at the 99th percentile. Far fewer systems are needed to pro-

vide reliable standardization factors than are typically required for a reliable relevance

assessment pool.

4.6 Cross-collection comparability

So far, we have examined the use of standardization within the one collection, first

where systems are self-standardizing, and then where the reference and standardized

systems sets are distinct. We have observed that standardization removes the topic

component of variance, completely for self-standardization, and substantially where

standardized and reference systems are distinct. We claimed that the removal of topic

variance was of most benefit for comparisons between collections. Now it is time to

empirically validate that claim.

In investigating the question of cross-collection comparability, two kinds of collec-

tion pairs need to be considered. The first are those where each collection has been

randomly sampled from the same population; for instance, collections that have the

same document corpus and that have topic sets randomly sampled from the same query

stream. Such collections will be termed randomly co-sampled. The second type are

collections which have not been randomly sampled in this way, and between which

there may be some systematic difference; what will be referred to here as natural col-

lections. As the name “natural” implies, most collection pairs fall into the latter cate-

gory, while the former must be artificially created. Randomly co-sampled collections

by definition differ only by chance, so that (for instance) the conditions for hypothe-

sis testing between them are met. Statistical comparisons between natural collections

must be more tentative or assumption-based, since the true nature of any systematic

difference between them is generally unclear.

In our experiments, randomly co-sampled collection pairs are constructed from the

TREC 2004 Robust test set by sampling from its topic set. Here, the 100 topics from

the AdHoc tracks of TREC 7 and TREC 8, namely Topics 351–450, are used; these

two sub-collections are chosen because they are the most mutually homogeneous. The

runs are those from the TREC 2004 runset, with scores standardized using the original

TREC 7 and TREC 8 systems as the reference sets for their respective sub-collections.

The topics are randomly partitioned into two halves to form two randomly sampled

collections. The random partitioning is repeated multiple times to generate a set of

identically-sampled collections. The natural collections, in contrast, are simply the

original sub-collections from which the TREC 2004 Robust collection was formed.

Note that in this section we are exploring a particular form of cross-collection com-

parison under standardization, that in which the reference set for each collection differs.

An alternative form is one in which the same set of reference systems is used for both

collections. The latter is preferable, other things being equal, because the reference

systems are consistent; different reference sets could have different levels of perfor-

mance, and hence produce standardization factors (in particular, means) of different

stringencies; that this occurs in the data set under experiment here will be observed

later (see Table 4.12 below). The collaborative TREC style of collection formation,
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however, naturally leads to each collection having its own reference set. The situation

of TREC 2004, where a large set of systems are collaboratively run across a number

of collections, is quite unusual. A common reference set can be created by a third

party, but such a reference set is likely to be narrower than a collaboratively-created

one. These issues are discussed further in Section 4.7.

4.6.1 Measuring comparability

Score comparability between collections means that, if we run the same system against

two collections, it should receive similar scores for each collection. Here, “similar”

can be understood in the general sense of receiving aggregate system scores that are

not too different; or, more narrowly, as receiving topic score sets that are not found

significantly different under a significance test. Note that we explicitly are not mea-

suring comparability by the correlation (rank or otherwise) between the scores that the

one set of systems achieves on two different collections. Correlation only measures

relative, not absolute, scores; what we are exploring here is whether absolute scores

from different collections can be compared.

Comparability of mean scores

System score comparability can be measured by the root mean squared error (RMSE)

between the mean scores that each system achieves on different collections. Continuing

the notation of Section 4.1, let S be our set of evaluated systems, of size S = |S|.
Consider two collections, C andD. LetMC

s∗ be the score that system s ∈ S achieves

(under some metric) on collection C (that is, the mean of the scores that s achieves on
the topics making up C), and similarly for MD

s∗. Then the root mean squared error

between C and D is:

RMSE =

√

√

√

√

∑

s∈S

(

MC
s∗ −MD

s∗

)2

S
(4.9)

Essentially, the RMSE value in Equation 4.9 measures the average difference between

mean system scores that occurs, under the same metric, from using different topic sets;

the greater this average difference, the less stable mean scores are for that metric, and

therefore the less comparable they are between collections.

The raw RMSE value, however, is dependent upon the dispersion of mean score

values for a metric. To take a simple case, if the scores for one metric are precisely

ten times the scores for another, then the RMSE for the former metric will be ten times

the RMSE for the latter one, even though the comparability is effectively the same.

Some unnormalized metrics (SP, DCG) are not upper-bounded by 1, and standardized

metrics are not bounded at all. To compare RMSE scores achieved for different metrics,

therefore, a metric’s RMSE score must be adjusted by the natural variability of mean

scores for that metric, as measured between different systems on the same collection.

We measure this variability as the standard deviation of mean scores that the systems S
achieve on each of the collectionsC andD, and then average those standard deviations.

Normalizing by this measure of natural mean score variability for a metric, we derive

a coefficient of inter-collection comparability, κ (read “kappa”):

κ =
2 · RMSE

sd({MC
s∗ : s ∈ S}) + sd({MD

s∗ : s ∈ S})
(4.10)
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A κ value of k for a given metric means, roughly speaking, that the average differ-

ence in mean scores that the one system achieves on two collections is k times the

natural standard deviation of mean scores for that metric. Adjusting by standard devi-

ation in our measure corresponds to the adjustment for the variability of a metric that

an experimenter would use, based on (statistical or informal) experience, in interpret-

ing the significance of score deltas for a particular metric; consider, for instance, the

empirical calibration of size of score delta and reliability of comparison carried out

in Buckley and Voorhees (2000).

Comparability under significance tests

Comparisons of system performance between collections are initially made on mean

scores; but the statistical significance of score differences must then be tested. This

raises the question of the reliability of two-sample significance tests between collec-

tions. For such tests, reliability has two aspects: the rate of false positives, and the rate

of false negatives. A false positive occurs when two identical systems are found to be

significantly different; a false negative when significance is not found even though the

two systems differ by some amount. In calculating both rates, the central problem is

establishing what are true negatives and true positives.

The rate of false positives can be investigated by testing a system for significance

against itself, when run on two different topic sets. Obviously, a system is not signif-

icantly different from itself, so if a significance test finds that it is, it must be a false

positive. The experiment is to take a topic set, and randomly partition it in half. A

two-sided, two-sample t test is applied for every system in the system set, between the

scores the system achieves on each partition of the topic set. The proportion of the tests

that achieve significance at the α = 0.05 level is recorded as the false positive rate for

that partition. The partitioning is repeated multiple times, to produce a distribution of

false positive rates. The expected false-positive rate for all metrics, whether raw, nor-

malized, or standardized, is 0.05, the same as α. This follows directly from performing

random co-sampling. What is of more interest is the stability of standardization tests;

that is, the variability in false positive rates over different co-samples. This variability

can be measured by taking a high percentile of the distribution; we take the 97.5th
percentile. The variability measures the risk that, by chance, we end up with a pair of

incomparable collections. This risk is all the more serious in that, in reality, once a col-

lection is formed, it is reused unchanged in hundreds of experiments; any distortions

once created will be perpetuated indefinitely.

To illustrate, we calculate the distribution of false positive rates on our co-sampling

dataset for the AP metric; the 97.5th percentile rates for other metrics are given later.

Figure 4.9 displays the results of the experiment. The mean rate of false positives is

0.049 for both unstandardized and standardized AP scores respectively, close to the

expected α = 0.05. But the variability of false positive rates for the unstandardized

AP scores is much greater than for the standardized ones. For unstandardized AP,

most topic partitionings show no false positives at all; this indicates an insufficiently

sensitive test, since a rate of 0.05 is expected. At the other extreme, one of the random

partitionings finds all 110 of the 110 systems to be better than themselves—a real boon

for the IR researcher with a paper to publish. In contrast, standardized scores give a

median false positive rate not too far from the desired mean (0.036, compared to 0.05),
and in only 2.5% of cases does the false positive rate exceed 0.15.

Determining the rate of false negatives is more difficult, in that we do not know

what the true positives are—that is, which systems truly are better than which. The
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Figure 4.9: False positives on two-tailed two-sample t tests at α = 0.05 for

TREC 2004 Robust systems, using 50-topic randomly-partitioned subsets of Topics

351–450, repeated 5,000 times. The line within the box is the median; the left and

right box edges are the 25th and 75th percentiles, respectively; the dashed whiskers

extend to the extreme values; and the thick line on the right whiskers marks the 97.5th
percentile. The dotted vertical line is the expected mean of both distributions; the ob-

served means fall approximately on this line.

approach adopted here is to identify system pairs between which a paired significance

test finds highly significant differences under all of the raw, normalized, and standard-

ized variants of a given metric. Such system pairs are regarded as being pairs in which

one system is almost certainly better than the other. The false negative rate is then

determined by sampling true positive pairs and topic partitions. A true positive pair is

chosen at random, along with a random topic partitioning, with one half of the topics

assigned to the first system, the other to the second. Then, a two-tailed, two-sample t
test is performed between the systems, both with standardized and with unstandardized

AP scores. If this test fails to find significance, that is taken as a false negative. The

process is repeated multiple times to produce an estimate of the false negative rate. The

results of the false negative experiment are given below.

4.6.2 Comparability of co-sampled collections

We begin by examining comparability between randomly co-sampled collections. Ran-

domized topic set repartitioning is used to determine κ, the inter-collection comparabil-

ity of mean scores, for different metrics. Figure 4.10 gives the mean κ of multiple ran-

dom partitionings of the TREC 7 and TREC 8 AdHoc topics; recall that smaller values

of κ indicate greater comparability. The metrics P@10, RBP with p = 0.95, SP (unnor-

malized AP), and DCG are compared, together with their normalized and standardized

variants. The results show that every metric with standardization is more stable than

any metric in its raw form. And standardization leads to significantly greater stability

than normalization, even on co-sampled collections. (As will be seen later, normaliza-
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Figure 4.10: Mean inter-collection comparability, κ, for TREC 2004 Robust track sys-

tems on 1,000 random partitionings of Topics 351–450 from the TREC 7 and TREC 8

AdHoc tracks, for different metrics, with and without normalization and standardiza-

tion. Standardization factors are derived from the original TREC 7 and TREC 8 sys-

tems. Higher values indicate less comparability.

tion can be far less robust on natural collections.) Standardized system scores are more

reliably comparable between collections, and thus more meaningful in themselves.

A method for calculating false negative rates in significance tests was described in

Section 4.6.1; we now apply it to the co-sampled data set. True positives are identified

as system pairs achieving significance at the 0.001 level in a paired t test on all 100 of

the TREC 7 and TREC 8 AdHoc track topics. A total of 5,000 repeated resamplings

are made, each of a topic partitioning and “true” significant system pair, with topics

partitioned into two subsets of 50 topics each. The target significance level is set at

0.05. Figure 4.11 gives the false negative rates for different metrics and normalization

types. False negative rates for unstandardized metrics vary from 0.25 up to more than

0.4; for standardized metrics, they are all below 0.08, and as little as 0.03 for sDCG and

sAP. The results are unsurprising, given we have already seen that two-sample tests

are much more powerful for standardized than for unstandardized scores. These results

demonstrate that real and substantive differences between systems are much less likely

to be missed by significance tests in cross-collection comparisons when standardized

scores are used than when unstandardized ones are.

That standardized AP has a more stable false positive rate than unstandardized AP

was demonstrated in Figure 4.9 above; we now examine this rate for other metrics, in

their raw, normalized, and standardized forms. Figure 4.12 gives the 97.5th percentile

false positive rates for the TREC 2004 Robust track systems over the TREC 7 and

TREC 8 AdHoc track topics; each bar represents the information represented by the

solid line in Figure 4.9. The metrics SP and DCG have higher discriminative power

than RBP or P@10, so the fact that they have higher false positive rates is not surpris-

ing. For all metrics, standardization enormously decreases the 97.5th percentile false

positive rates, from around 50% to just over 15%. This is achieved without harming
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Figure 4.11: False negative rate for various metrics and forms of normalization. A

false negative is a failure to find significance, using a two-tailed, two-sample t test at
level α = 0.05, between two systems that are in fact different from each other. Truly

different systems are those which, for a given metric, are found significantly different

in a paired t test at level α = 0.001, under the raw, normalized, and standardized forms

of the metric. Of the 5,955 system pairs, 1,714 were found truly different for P@10,
2,408 for RBP, 2,896 for SP, and 3,429 for DCG. False negative rates are calculated

over the 110 TREC 2004 Robust track systems, using 5,000 samplings of system pairs

and partitionings of Topics 351–450 from the TREC 7 and TREC 8 AdHoc tracks.

Standardization factors are derived from the original TREC 7 and TREC 8 systems.

discriminative power. For instance, for the TREC 8 sub-collection, the proportion of

system pairs found significantly different on a two-tailed, paired t test at level α = 0.05
is 68.7% for DCG, 69.3% for nDCG, and 68.8% for sDCG. Normalization, in contrast,

does little to reduce upper-percentile false positive rates. Thus, unstandardized metrics,

in a cross-collection comparison between systems, are more likely than standardized

metrics both to miss substantive differences when they exist (as shown in Figure 4.11),

and to find them when they don’t. This, and the mean score comparability values report

in Figure 4.10, show that, where random co-sampling has occurred, use of standardized

metrics leads to far more reliable inter-collection comparisons.

4.6.3 Comparability of natural collections

Randomly co-sampled collections are amongst the most favourable cases for inter-

collection comparisons. In practice, different natural collections are not identically

sampled. The AdHoc and Robust TREC collections do, however, use the same docu-

ment corpus and were built with similar methodologies. Comparability between these

collections would be desirable, even expected; absolute metric scores should be able

to convey information about substantially equivalent collections. We now explore the

comparability of metrics between natural collections, and the effect of normalization

and standardization on this comparability.
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Figure 4.12: The 97.5th highest percentile false positive rates for various metrics, with

different forms of normalization. A false positive is a finding that a system is signif-

icantly different from itself using a two-tailed, two-sample t test at level α = 0.05.
False positive rates are calculated for the 110 TREC 2004 Robust track systems, by

5,000 random re-partitionings of Topics 351–450 from the TREC 7 and TREC 8 Ad-

Hoc tracks. Standardization factors are derived from the original TREC 7 and TREC 8

systems.

T8.adh T03.rob T04.rob

T7.adh 0.627 1.857 1.285

T8.adh 1.387 0.859

T03.rob 0.583

Table 4.9: Inter-collection comparability κ for unstandardized system AP scores be-

tween each pair of collections in the TREC 2004 Robust set for all systems participating

in the track. Higher values indicate less comparability.

The first question is whether systems achieve similar mean scores on different col-

lections; the coefficient of inter-collection comparability, κ, is used to measure this.

Table 4.9 shows κ for each pair of collections used in the TREC 2004 Robust track,

measured on the TREC 2004 Robust runs under the AP metric. The two AdHoc

sub-collections are relatively comparable to each other, as are the two Robust sub-

collections, with each pairing having a κ around 0.6. But comparisons between any

AdHoc and any Robust sub-collection are unreliable, with κ values ranging from 0.85
up to 1.85; that is, the average error of mean scores between collections can be almost

twice the standard deviation within collections. Significance tests between AdHoc and

Robust collections under AP are also highly unreliable, as shown by the high rate of

false positives in Table 4.10. Almost all systems seem significantly better than them-

selves when evaluated using AP against the TREC 2003 collection than when evaluated

against the TREC 7 collection.
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T7.adh T8.adh T03.rob T04.rob

T7.adh 0 0 0

T8.adh 2 0 0

T03.rob 103 57 2

T04.rob 61 8 0

Table 4.10: Number of the 110 TREC 2004 Robust track systems that were found to

be significantly better when tested on the sub-collection in the row than on the sub-

collection in the column, under unstandardized mean AP. Significance is determined

by a two-sample, one-tailed t-test, at level α = 0.025.

T8.adh T03.rob T04.rob

T7.adh 0.349 0.396 0.452

T8.adh 0.464 0.462

T03.rob 0.394

Table 4.11: Inter-collection comparability κ for system standardized AP scores, be-

tween each pair of collections in the TREC 2004 Robust set, for all systems partici-

pating in the track. Standardization factors are derived from the original experiments.

In contrast, sub-collections are much more comparable under standardized AP, even

across the AdHoc–Robust separation, as can be observed from Table 4.11. Standard-

ized scores have a lower κ for every collection pair than do the unstandardized AP

scores in Table 4.9. The minimum κ for unstandardized scores was 0.583; the max-

imum κ for standardized scores falls well below this at 0.464, and the minimum is

0.349. Moreover, comparability between AdHoc and Robust sub-collections is only

slightly worse than within them, ranging from 0.40 to 0.45 for the former, from 0.35
to 0.40 for the latter. Table 4.12 shows the false positive rates for significance testing

between two sub-collections. The number of false positives among the 110 systems

is much lower overall than for unstandardized AP. There is, however, a persistently

high false positive rate, of over 10% but less than 15%, for finding TREC 2004 sys-

tems significantly better than themselves when tested on an earlier sub-collection rather

than on their own sub-collection. There are two causes of this. First, the TREC 2004

systems do, on the average, get slightly higher scores on the earlier sub-collections

than the original runsets do (see ahead to Table 4.13), perhaps due to training effects.

And second, the TREC 2004 systems are self-standardized on their own sub-collection,

other-standardized on the earlier ones. Other-standardization leads to higher variabil-

ity than self-standardization; therefore, a larger proportion of system comparisons end

up beyond the significance mark. Nevertheless, comparisons are much more reliable

overall for standardized than for unstandardized scores.

While on this topic, it is interesting to consider whether the sub-collections them-

selves are significantly different from each other, as measured by the κ statistic, with

or without standardization. The null hypothesis here is that, for any pair of sub-

collections, the topics have been randomly assigned to the two sub-collections; where

by “topics” must be understood not just the queries, but the relevance assessments,

and normalization and standardization factors that go with them (including, therefore,
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T7.adh T8.adh T03.rob T04.rob

T7.adh 4 5 14

T8.adh 2 5 13

T03.rob 4 13 12

T04.rob 3 8 1

Table 4.12: Number of the 110 TREC 2004 Robust track systems that were found to

be significantly better when tested on the sub-collection in the row than on the sub-

collection in the column, under standardized mean AP. Standardization is performed

using the standardization factors from the original experiments the sub-collections were

formed for. Significance is determined by a two-sample, one-tailed t-test, at level α =
0.025.

the effect of the normalizing or standardizing runsets as well). We can test this null

hypothesis by once again using topic set re-partitioning. The topic sets of the two

sub-collections are combined, then randomly re-partitioned. The proportion of these

re-partitions giving a κ greater than that of the natural collections is the p value of

the test. So, for instance, under unstandardized AP, the natural TREC 7 and TREC 8

sub-collections have a κ of 0.627 (Table 4.9); the random re-partitioning test finds a

(highly non-significant) p value of 0.353 for this outcome. In contrast, the observed κ
of 1.857 under unstandardized AP between the natural TREC 7 and TREC 2003 sub-

collections is significant at the 0.001 level. Similarly, under standardized AP, TREC 7

and TREC 8 are not significantly different, but TREC 7 and TREC 2004 are at the 0.01
level. The latter significance is despite the fact that the κ value of 0.452 is lower than

that of any of the unstandardized comparisons. This is an example of the oft-repeated

point that significance of a difference does not equate to the size of that difference.

Standardization reduces topic variance between collections, but it also does so within

them, meaning that a smaller between-collection κ can be significant on standardized

scores, where a larger one is not significant on unstandardized scores.

Figure 4.13 gives the inter-collection comparability, κ, between systemmean scores

for various metrics, in their raw, normalized, and standardized forms. The value of 1.1
in the middle bar of the SP/AP group, for instance, is the mean of the six values re-

ported in Table 4.9. Note that these means include the two same-track pairs as well as

the four different-track (Robust-to-AdHoc) pairs; if only the latter were included, the

results would be even less flattering to unstandardized AP and DCG. Standardization

moderately improves RBP’s observed cross-collection comparability, and marginally

worsens that for P@10. The improvements for SP/AP and DCG, however, are dra-

matic, even from their normalized forms. Comparison to the co-sampled results in

Figure 4.10 shows that the standardized scores on the natural collections achieve re-

sults similar to those on the co-sampled ones, but DCG and AP, in both unnormalized

and normalized forms, perform much worse. For instance, nDCG achieved a mean κ
of 0.43 on the co-sampled collections; for the natural collections, the mean κ is 0.88.
Errors between mean scores on the natural collections are twice what they are on the

co-sampled ones.

The reason why the normalized metrics are even less comparable between the nat-

ural collections than for co-sampled collections is due to differences in the constitu-

tion of the set of known relevant documents R, and hence in the normalization fac-

tor R = |R|. Both Robust and AdHoc judgment pools were formed by pooling to
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Figure 4.13: Mean inter-collection comparability, κ, for TREC 2004 Robust track sys-

tems between each pair of the TREC 7 AdHoc, TREC 8 AdHoc, TREC 2003 Robust,

and TREC 2004 Robust collections, for various metrics, without and with standardiza-

tion. Standardization is performed based on the original experimental systems. Higher

values indicate less comparability.

depth 100 (depth 125 for TREC 2003), but the number of participant groups and there-

fore pooled systems was quite different, with 42 and 41 systems pooled for the two

AdHoc collections and only 16 and 14 for the Robust ones. Moreover, the AdHoc

tracks included a large number of manual runs, which uniquely identified around 25%

of the known relevant documents, whereas the Robust tracks had no manual runs con-

tributing. The effect of these differences in the constitution of the assessment pool can

be seen in Table 4.13. The average number of known relevant documents per topic,

R, is much greater for the AdHoc than for the Robust collections. The Robust topics

are not harder than the AdHoc ones, with the TREC 2004 Robust systems receiving

very similar average system P@10 and RBP scores. But the normalized metrics such

as AP and nDCG are misled, as it were, by the smaller values of R into thinking these

topics are harder, and normalizing their scores higher. Conversely, SP and DCG, be-

ing non-convergent metrics that evaluate deep in the runs, give much higher average

scores to the sub-collections with more known relevant documents. Standardization,

not being reliant upon R, is not affected by these differences in pool coverage. The

TREC 2004 runs are, however, slightly stronger as a group than the earlier runsets (if

only through the training effect of having the earlier collections available to them in

advance), so standardizing by original runs gives them slightly higher scores on the

earlier sub-collections than on their own.

These experiments demonstrate that, as anticipated, standardization greatly increases

comparability between distinct test collections, so much so that significance tests be-

tween collections become feasible. In contrast, normalization based on the number of

relevant documents, as performed in AP and nDCG, is sensitive to variability in the

way relevance assessments are collected, such as differences in pooling. Standardiza-

tion is robust to these differences. Where different collections have different reference
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T7.adh T8.adh T03.rob T04.rob

Judged 1606.9 1736.6 958.7 710.0

Relevant 93.5 94.6 33.2 42.1

P@10 0.452 0.450 0.466 0.434

RBP.95 0.331 0.343 0.308 0.308

AP 0.212 0.244 0.327 0.293

nDCG 0.479 0.514 0.617 0.574

SP 17.88 20.29 9.71 11.61

DCG 9.11 9.81 6.22 6.75

sAP 0.088 0.022 0.077 0.000

sDCG 0.137 0.081 0.083 0.000

Table 4.13: Mean number of documents judged and mean number of documents found

to be relevant for the different sub-collections of the TREC 2004 Robust collection, and

mean P@10, RBP p = 0.95, AP, nDCG, SP, DCG, standardized AP, and standardized

DCG scores for the TREC 2004 Robust track systems run against each sub-collection.

Standardization is performed using original runsets.

sets, standardization is subject to differences between reference sets, an issue that is

examined further in Section 4.7; on the experimental data, however, these differences

are slight, and far less than those arising from topic variance in unstandardized metrics.

4.7 Outstanding issues in standardization

We have seen that standardization removes topic variance in self-standardized runsets

(runsets in which reference and standardized systems are the same) (Section 4.4). We

have also seen that, at least for the TREC 2004 Robust test data, standardization of non-

reference systems greatly reduces topic variance (Section 4.5). We have observed on

the TREC 2004 data that the reduction in topic variance makes cross-collection compa-

rability much stronger for standardized than for unstandardized metrics (Section 4.6).

Thus, standardization has been shown to achieve its core goals: increasing the infor-

mation that absolute mean and per-topic scores convey, and making cross-collection

score comparisons, and even significance tests, feasible. There are, though, a number

of outstanding issues with standardization, which this section discusses. Much of this

material constitutes topics for further research; the intention here is to recognize the

questions involved, and propose directions to take in addressing them.

4.7.1 Reference set dependence

Where different reference sets are used to derive standardization factors for different

collections, then there is a dependency between standardized scores and the reference

set. Most simply, if the reference systems for collection A are weaker as a group than

those for collection B, then systems will tend to achieve higher standardized scores on

A than on B. As a result, cross-collection comparisons become less reliable. This de-

pendency has been observed in Section 4.6; the TREC 2004 runs appear to be stronger

(perhaps due only to a training effect) than those of earlier years. System comparisons
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between different collections are still much more dependable for standardized than for

unstandardized scores; nevertheless, false positive rates for significance tests between

certain collection pairs are higher than the significance level set (Table 4.11).

The apparent solution is to use the one set of reference systems for every collection.

Consider, for instance, reversing the setup of our experiments on the TREC 2004 data

set: take the TREC 2004 Robust systems as the reference systems, and use them to stan-

dardize and compare the scores of the original runsets against the TREC 6, TREC 7,

TREC 8, and TREC 2003 collections. This represents in fact a likely use case for

standardization, in which comparisons are being made between the results of systems

not under the researcher’s control, achieved on different collections. Precisely such a

method is used in Section 8.2.1 to investigate the trend in system performance over the

AdHoc and Robust tracks of TREC: a number of reference systems are run across all

the relevant collections, and used to standardize the scores of the original TREC runs,

to allow them to be compared over time. A problem is that new reference systems are

likely to be fewer and less diverse than are found in a full collaborative experiment

such as TREC, leading to less stable standardized scores and more outliers. One pos-

sible solution to the lack of diversity is a hybrid scheme, where original collaborative

systems are used to control topic variance within a collection, while the common ref-

erence systems are used to adjust mean scores between collections. Other approaches

are discussed in Section 4.7.3 below.

Common reference systems could also be used where not just the examined sys-

tems, but also the experimental collections, are not available. Consider, for instance,

the research group of a commercial search company, reporting experiments for a pro-

prietary system on a non-shareable data collection. Some degree of result compara-

bility could be maintained by also running a set of publicly-available systems across

the same collection and topics, and publishing standardization factors and standardized

scores based on this public reference set. Such a procedure is, in a way, an extension

of the experimental principle of using baseline runs to compare new methods against.

Finally, one must not be too sanguine about standardization’s capacity to enable

comparisons between genuinely dissimilar collections. If different collections repre-

sent systematically different search tasks, then even a common set of reference systems

will have a limited ability to make results comparable between such collections. In

terms of the components of variance analysis, it might be said that the inter-collection

system–topic interaction variance is too high: certain systems will perform better on

the task that one collection represents than on the task which the other collection does.

But in such a situation, inter-collection comparisons may not make sense at all.

4.7.2 Outlier scores

The standardized scores of systems that are part of the reference set have an upper and

lower limit. As discussed in Section 4.3, if there are n systems in the reference set,

then the maximum or minimum score a system can achieve on a topic is ±
√
n− 1.

This prevents any one topic from carrying too much weight in the mean score of a

reference system. There is, however, no fixed bound on the standardized score that

a non-reference system can achieve. If the reference systems all receive similar raw

scores on a topic, the standard deviation for that topic will be small; if a non-reference

system receives a score significantly above or below this mean, then its standardized

score will be very large (positive or negative).

A large standardized score for a topic achieved due to a small standard deviation

amongst reference systems can potentially have a disproportionate influence on a sys-
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Figure 4.14: Maximum standardized AP scores achieved for each query across the

TREC AdHoc and Robust runsets. The reference set was 17 variants of 5 public re-

trieval systems, run across all collections. The standardized runs were those of the

participant systems in the TREC 3 through 8 AdHoc track, and TREC 2003 through

2005 Robust track. Note the log scale on the y axis (all maximum scores are positive).

tem’s mean score. An extreme case of this occurs in the TREC 2004 Robust experi-

mental set, where for Topic 309 all the original TREC 6 runs scored 0.0 for precision

at ten, whereas four of the TREC 2004 runs score 0.1; the stopgap solution for this

situation is to set all standardized scores to 0 where the reference standard deviation is

also 0. Beyond this extreme case, there are a number of other standardized scores over

the maximum possible reference score, based on the 78 reference systems, of 8.77; for
instance, eight TREC 2004 Robust systems achieve a standardized AP score above this

limit for Topic 605, with the maximum score being 11.82.
The outlier values observed on the TREC 2004 Robust runs, however, are restrained

examples of the phenomenon, because the TREC participant systems constitute large

and diverse reference sets. Where references runs must be produced from scratch, as

for instance where a common reference set is required across a number of collections

(the scenario suggested in Section 4.7.1), then only a more restricted set will generally

be possible. Manual runs will be lacking, and the automatic runs will be less tuned and

probably more conventional in their approach. In such a situation, the smaller number

and reduced diversity of runs will lead to less stable standardization factors, causing

the more frequent appearance of outliers.

The problem of narrow reference sets producing outlier standardized scores is en-

countered in Section 8.2.1. We compare the scores achieved by participant systems at

each of the TREC AdHoc and Robust tracks. To make such a comparison, scores must

be standardized by some common reference set. The reference set employed consists

of five publicly available systems, run in seventeen different configurations. Some of

these runs included query expansion, but no great effort at tuning was made; in partic-

ular, systems were not tuned to individual collections. This reference set is much less

diverse than the original TREC participant systems. The set underperforms many of the
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original manual or highly-tuned automatic runs by a wide margin. As a result, some

queries receive maximum standardized scores that are quite extreme, as Figure 4.14

reveals. Almost 18% of the queries receive a maximum standardized AP score above

10.0; for one query, the maximum score is 261.9. (Negative outliers are much less

extreme; the minimum standardized score is −9.7.) Such extreme outlier values can

easily distort system scores and comparisons, and suggest the need for transformations

that limit extreme values.

4.7.3 Transformations

The dependency of standardization upon the set of reference systems has been noted

in the previous two sections. It has been observed in particular that an insufficiently

diverse reference set can lead to extreme standardized scores; and such a reference set

is likely to be encountered in practice when one moves beyond using the participants of

TREC-style collaborative experiments. In this section, we explore a number of possible

transformations and adjustments to standardized scores. These transformations are

partly motivated by theoretical considerations; but they also address the dependency

and outlier problems described above.

Mapping

Most standard evaluation metrics take scores in the range [0, 1]. It would therefore be at
least aesthetically desirable for standardized scores to do so, too; a standardized score

of 0 means “average”, but (in the context of P@10, RBP, AP, and nDCG) is liable to

be interpreted as “failed”. Mapping to the [0, 1] range also serves to reduce the impact

of outlier values; how great the reduction is depends upon the mapping chosen.

Any function mapping from the standardized scores’ (potential) range of [−∞,∞]
to the desired range of [0, 1] is a possible candidate. An obvious class of functions

of this sort are the cumulative distribution functions of probability distributions with

infinite and continuous domains; and the most obvious of these distributions is the nor-

mal distribution. Thus, our first candidate mapping function is the cumulative density

function of the standard normal distribution:

FX(m′) =

∫ m′

−∞

1√
2π

e−x2/2 dx (4.11)

Under normal CDF mapping, a standardized score of 0.5 means “average”; 0.84 and

0.16 represent one standard deviation above and below average; 0.977 and 0.023 rep-

resent two standard deviations; and so forth. (The cross-collection comparisons of Sec-

tion 4.6 were originally performed in Webber et al. (2008b) using normal CDF map-

ping, which gave similar, but slightly more stable, results to the unmapped standardized

scores reported above.)

Such a mapping solves the problem of outlier values having disproportionate in-

fluence on mean scores; no matter how high the unmapped standardized score is, the

mapped one cannot go beyond 1. There may, however, be a number of standardized

systems with high unmapped scores, particular if the experimental set significantly out-

performs the reference set as a group. In this case, the telescoping of high values will

lead to a loss of discrimination between scores. All unmapped standardized scores

beyond 1, for instance, are squeezed into the range [0.84, 1]. For almost 18% of the

queries covered by the experiments in Section 8.2.1, half or more of the unmapped
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standardized system scores are above 1; and for almost 8% of queries, half or more of

the scores are above 2. Such queries, potentially distorting under plain standardization,
become undiscriminating under mapped standardization.

A partial solution to the telescoping of outlier values under the normal CDF would

be to use a mapping function that is less thin-tailed. For instance, a t distribution with

1 degree of freedom would convert a unmapped standardized score of 2 to a mapped

score of 0.85, and even a unmapped standardized score of 10 goes to a mapped score

of 0.968, leaving some room for discrimination amongst outlier results. The use of a

broader mapping function can be seen on an intuitive level as a response to the sampling

problem posed by creating reference sets: such sets are not randomly sampled, and

even making them representatively diverse is difficult. Nevertheless, a solution of this

sort is only ad hoc, and it is difficult either theoretically or empirically to justify the

choice of any particular mapping function. Additionally, there is a trade-off between

allowing discriminative power to outlier values, and yet preventing them from having

a distorting effect on mean scores and comparisons.

A more theoretical objection to performing the mapping from the infinite range of

plain standardized scores to the finite [0, 1] range is that it involves undoing the range

transformation of a complex function (standardization) with a simple one. Under this

view, there should first be a mapping from the finite domain of the original scores to

an infinite range; then standardization would be performed on these mapped scores;

and finally a reverse mapping would be applied to bring the infinite-ranged standard-

ized scores back into the finite [0, 1] range.1 Further investigation of this proposal is

required.

Smoothing

The reference systems under standardization would ideally be a sample from the full

set of possible retrieval systems; and the problems of reference set dependency and

standardized score outliers can be regarded as arising from the inevitable incomplete-

ness and partiality that characterizes any real reference set when regarded as a sample.

A common approach to ameliorating the incompleteness of samples is that of smooth-

ing; it is therefore natural that we consider smoothing as a solution to the sampling

inadequacies of standardizing references sets.

The core idea of smoothing is to merge the model derived from some observed

sample with a background model derived from the environment or some a priori dis-

tribution. The observed sample is limited in size, and so the distribution estimates

it produces are quantized and spiky; introducing a broader background model helps

smooth out these irregularities. The use of smoothing in the retrieval approach of lan-

guage modelling provides a good example (Zhai and Lafferty, 2004). The basic notion

behind language modelling is that each document is produced by randomly sampling

from a probability distribution over terms, that is, a language model. The similarity of

a query to a document is then calculated as the probability that the model that produced

the document would also produce the query. The most straightforward estimate of a

document’s language model is simply the histogram of term frequencies in the doc-

ument. But that allows no probability that the language model would produce terms

that do not occur in the document, which is not justified, since we regard the document

itself as only a finite sample of its underlying language model. Therefore, the language

model derived from the document is smoothed by merging it with a language model

1This suggestion has been independently communicated by Stephen Robertson and Laurence Park.
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derived from, say, term frequencies across the collection as a whole. Among other

things, this allows a query to have a non-zero match against a document even if some

query keywords do not occur in the document.

We can regard the problem of reference set incompleteness in a similar light. The

fundamental idea of standardization is to determine how difficult (and variable) a query

is. If the full (conceptual) population of systems were available, difficulty and variabil-

ity could be determined directly from the scores this population achieves on the query.

The full population being hidden, the scores of the reference set instead act as a proxy

or (non-random) sample of this population. Even if the sample were random and unbi-

ased, it would be incomplete. But we know that the sample is very much non-random,

and is likely to be biased. Therefore, we sceptically (and pragmatically) smooth against

some background distribution of scores.

A simple form of smoothing is adopted by us in Section 8.2.1, to avoid both the

outliers of plain standardization, and the non-discrimination of CDF mapping. The ap-

proach is to add two virtual reference systems to the seventeen real ones. One of these

virtual systems is inept, scoring 0 against every topic; the other is perfect, and always

scores 1. Such a smoothing technique is plausible: the normalization inherent in AP

means that it is always possible, in theory, for a system to achieve a perfect score of

1; and it is certainly possible to create a system that always scores 0. Such smoothing

will remove the effect of outliers (or if, as is done in Section 8.2.1, normal CDF map-

ping is applied, it will reduce non-discrimination); the maximal achievable absolute

standardized score will be
√
n+ 1, where n is the number of real reference systems.

Smoothing of this sort, though, reduces the range of standard deviation factors. The

minimum standard deviation, occurring when all n real reference systems score 0.5, is
√

1/2(n+ 2). For a set of seventeen reference system as in Section 8.2.1, for instance,

the minimum standard deviation factor would be 0.16; this is past the 90th percentile

of actual standard deviations for that reference set, and just below the 80th percentile

of standard deviations of the TREC 2004 Robust runset. Means are also pulled towards

0.5. The result is a dampened form of standardization.

An alternative form of smoothing is to add the score of each standardized system

to the reference set, when that system’s standardized score is being calculated. This

has the effect of reducing the maximum absolute standardized score to
√
n, where n

is the number of reference systems (excluding the standardized one). It is also less

dampening than smoothing by adding {0, 1} scores. The effect, however, is to reduce

the relative performance of high-scoring systems. For instance, in the extreme case that

the reference systems all achieve the same score, then each standardized score can only

take one of the values {√n, 0,−√n}, depending on whether it is more than, equal to,

or less than the common reference set score; a system outscoring the reference set by a

long way gets the same score as one outscoring it by a sliver. This is an extreme case;

but where reference systems score very close to each other (usually because they all

score very badly), performance differences in standardized systems can be dramatically

telescoped.

One other form of smoothing that could be employed is against background stan-

dardization factors. For instance, the standardization factors for a topic could be a

combination of the raw factors for that topic, calculated as usual, and the mean of the

standardization factors observed for that reference set across the topic set as a whole.

This would ameliorate the situation in which a set of reference systems behaves anoma-

lously against one or a handful of topics in the set. It does little, though, to help the

circumstance that the reference systems are weak or insufficiently diverse against the

topic set as a whole. Smoothing could also be considered against some prior distri-
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bution, either theoretical or based empirically on historical score distributions for that

metric.

Given the potential for incompleteness and narrowness in reference sets, smoothing

is an attractive idea. Reference sets are most likely to be incomplete when they are

gathered and run by a single research group, for instance to create common reference

factors across a number of different collections, rather than when they emerge from

the joint efforts of a collaborative, TREC-style experiment. Common reference sets

offer the least biased foundation for cross-collection comparisons, but at the same time

are likely to be the most incomplete. It is in such a situation that smoothing is most

valuable. More research, however, is required to determine which of the available

smoothing methods is the most reliable and robust.

4.7.4 Standardization and paired comparison

Most of the benefits of standardization outlined in this chapter relate to the informa-

tiveness of absolute scores and to score comparisons between collections. The benefits

that standardization brings to relative comparisons within the one collection have been

less explored. We observed in Section 4.2.2 that not merely means, but also standard

deviations, have a high degree of variance between topics. It was suggested that this is

an undesirable characteristic, since it results in different topics having different impacts

on mean score deltas, and hence on comparisons between systems. In the mean case,

this doesn’t matter: if deltas agree, it does not matter much how they are distributed.

But we have also seen (Table 4.2) that the system–topic interaction effect is quite high,

indicating that different systems have quite different performances on different topics.

The combination of variability in topic performance with variance in topic standard

deviation suggests the possibility of quite unstable pairwise comparisons.

Standardization removes the variance in topic standard deviations; each topic has

the same standard deviation (for the reference set). This, perhaps surprisingly, appears

to have no great effect on paired significance tests; Table 4.6 found a slight increase

in discriminative power for AP on TREC 5, but Voorhees (2009b) fails to confirm

this effect on a broader range of metrics and runsets. More work on this question

seems appropriate. It certainly is the case, as Figure 4.4 shows, that the equalizing

of standard deviations does change the ordering of system ranking. One can produce

arguments as to why the standardized ordering should be more reliable; the problem,

as with all analysis of evaluation metrics, is to figure out how to objectively establish

this reliability.

4.8 Summary

This chapter has presented a novel (for information retrieval) transform for evaluation

metrics, namely score standardization. Standardization addresses the high variability

in topic difficulty. The variability in topic scores is greater than in system scores; any

given system–topic score tells us more about how difficult the topic was than about

how effective the system is. Absolute mean system scores, quoted in isolation, are

therefore largely meaningless; absolute topic scores, almost entirely so. One must

know how other systems performed on the topic or collection to gauge the system’s

relative effectiveness. This also means that comparisons between collections are weak.

The method proposed to address the issue of topic variability is to calculate the

mean and standard deviation of scores under a given metric for each topic, based on
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a set of reference systems. These standardization factors are then used to convert raw

scores on that topic into standardized z scores. The standardized scores convey infor-

mation about the system’s relative (and, if the reference set is comprehensive enough,

absolute) performance on a topic, information that is missing from a raw metric score.

Standardization perfectly equalizes topic score means and standard deviations for

the reference set of systems. This is reflected in a components of variance analysis by

the removal of the topic variance component, making absolute scores as comparable

as relative score deltas. Where standardization is applied to systems other than the

reference systems, topic variability is also greatly reduced, provided the reference set

is large and diverse enough.

One of the primary practical goals of standardization is to allow comparisons be-

tween scores achieved on different collections. We have demonstrated that, on TREC-

style runsets, standardization greatly improves score comparability between collec-

tions, and even allows tests of statistical significance to be employed. Where each

collection has its own reference set, there is a dependence between the results of stan-

dardization and this reference set; if the reference set for one collection is weaker than

the reference set for another, then systems will tend to achieve higher standardized

scores on the former than the latter. Nevertheless, at least on the experimental data set

employed, dependence on reference systems in standardized scores is much less of a

problem than topic variability in unstandardized, and even in normalized, scores.

The ideal situation for standardization is to have one reference set run across all

the collections involved. Forming such a reference set, however, requires a consider-

able amount of work, especially if it is being retro-fitted onto existing collections. It is

likely, therefore, that such a reference set will be smaller, less diverse, and less well-

tuned than the system sets produced as part of collaborative experiments such as TREC.

This can result in extreme outliers amongst the standardized scores. The distorting ef-

fect of outliers can be removed by mapping standardized scores to the [0, 1] range, but
if outliers are common enough, this can in turn lead to a loss of discriminative power.

An alternative (or complementary) method is to perform smoothing over the standard-

ization factors, for instance by introducing virtual systems or prior distributions over

topic scores. More work is required to clarify this issue.

The classic statistical techniques were developed in a research environment where

the typical experiment involved two samples, and where extraneous variables prevented

the precise replicability of experimental results. The core tool for such an experiment

is the significance test, and this has likewise become the main tool of statistical anal-

ysis within information retrieval experiments. But the test collection methodology is

different from that of the two-sample test in natural or social science. Experiments

are precisely replicable, and there is a wealth of information about experimental units

(in particular, topics) available in the runsets that participate in the original, collection-

forming experiments, not to mention runs made subsequently against those collections.

Standardization is one way of taking advantage of this contextual information to im-

prove the accuracy and informativeness of experimental results. Finding other ways to

use this contextual information seems a fruitful area for further investigation.



Chapter 5

Statistical Power in Retrieval

Evaluation

The effectiveness of information retrieval systems is determined through comparative

evaluation on test collections. A finding that one retrieval system achieves a higher

mean score than another must be verified using a test for statistical significance. Sig-

nificance tests determine whether an observed difference in performance could have

occurred by chance, in particular in the choice of topics; only if the probability of a

chance occurrence is sufficiently low can the result be accepted as significant. If the

experiment fails to find significance, though, one cannot simply conclude that no con-

sequential difference exists. Instead, the experimenter wishes to know how large an

actual difference in performance could have been missed. Additionally, when design-

ing an IR experiment, the experimenter needs to decide how large a topic set is required

to reliably detect a consequential difference in performance.

The reliability with which a significance test can detect a consequential difference

is referred to as the power of that test. The retrieval experimenter is confronted with

the question of power both when considering the use of an existing test collection, and

when planning the creation of a new one. If a test collection exists with content of a

suitable type for the planned experiments, the experimenter must determine whether

that collection contains enough topics to reliably detect the anticipated, consequential

improvement in performance. If no test collection of suitable content exists, or those

that do are too small, then the experimenter is forced to create a new collection, and

must decide how many topics to include in it. To answer either question, the experi-

menter needs to decide what counts as a consequential difference. Failure to achieve

the experimental power required to detect this difference can result in an unproductive

experiment, one from which neither a positive nor a negative conclusion can be drawn.

The question of statistical power has been surprisingly neglected in the information

retrieval literature. In particular, while some early user studies examine it (Robertson,

1990), its application to batch evaluation using test collections has been little studied.

Cormack and Lynam (2007) make an empirical investigation of the post-hoc power of

different significance tests, but their method cannot be used at experiment design time.

Carterette and Smucker (2007) provide a power analysis of the inferential delta AP

measure (Carterette, 2007), but only for the sign test.

We begin this chapter with a description of statistical power, how it relates to statis-

tical significance, and how power analysis is used both to examine the results of a past
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experiment and to plan a new one. In Section 5.2, we examine the statistical power of

the standard TREC collections, finding that a typical 50-topic TREC collection is in-

sufficiently powerful to reliably detect a realistic improvement over a reasonable base-

line. Even if a TREC collection exists in an area, it may well be inadequate to answer

research questions; and if no suitable collection exists, the experimenter is forced to

create their own. In Section 5.3, we examine the use of power analysis at the time of an

experiment’s design, to determine the number of topics required for a new collection.

This calculation rests primarily on estimating the variability in score deltas, and we

analyze three methods for arriving at this estimate: based on past experience; based

on a trial experiment; or through an iterative testing process. Experience, if available,

is free but unreliable; trial experiments are unbiased but expensive; and the iterative

method is efficient but prone to bias. We therefore propose a hybrid methodology.

5.1 Statistical power

The use of hypothesis testing in IR evaluation was described in Section 3.3. There, it

was explained that the probability of a null hypothesis is tested against a significance

threshold, α, which sets the risk of falsely finding significance when no difference

between systems exists. We are concerned now with the corresponding risk, β, of
failing to find significance where it exists. This value is directly related to the power of

a test: the likelihood that a significant difference will be found, if one system is indeed

better (by a certain amount) than the other. In this section, we describe the calculation

and use of statistical power.

5.1.1 The power of a test

Consider two IR systems, A and B, that are to be evaluated and compared using a test

collection, containing a set of n topics T = {t1, . . . , tn}. Denote the metric (say, AP)

score that system A achieves on topic t as mA,t. The mean score mA for system A is
∑

t mA,t/n, and similarly for system B. The difference between means, mA −mB ,

we denote as dA,B or simply d. It represents the observed delta between the systems.

For each topic t, the per-topic delta, dt, ismA,t −mB,t. Of course, d =
∑

t dt/n; that
is, the delta of the means is the mean of the sum of the per-topic deltas.

Having observed dA,B > 0, we conclude that systemA has outperformed systemB
on topic set T , under the metric employed. The significance of this difference dA,B is

then tested using a hypothesis test. The hypothesis test assumes that the collection top-

ics T have been randomly sampled from a larger population of topics T . Equivalently,
therefore, the observed per-topic deltas D = {d1, . . . , dn} between system A and B
have also been randomly sampled from the population of score differences between the

two systems, D, over the population of topics. The true delta, δ, between the systems

is the mean of the population of deltas, δ = D̄. Testing for significance involves for-

mulating a null hypothesisH0 that the two systems have in fact identical effectiveness,

that is, that δ = 0, and then determining the probability p that the observed difference

d or greater could have occurred by chance if this hypothesis were true. If p is below

some predetermined significance level α (where α = 0.05 is a common choice), then

H0 is rejected, and the alternative hypothesis, that the two systems are not equivalent,

is accepted.

In hypothesis testing, the value α specifies the risk of falsely finding a significant

difference when no difference in fact exists, in what is known as a Type I or false
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Figure 5.1: False positive rate α, false negative rate β, and power P = 1 − β, for a
true delta δ of 0.05, a standard deviation σ of 0.16, and a sample size of n = 50, under
a one-tailed, paired t test at significance level α = 0.05. Significance will be achieved
if the observed mean delta d is 0.0376 or higher and the observed standard deviation s
is the same as the population standard deviation σ. The probability β that significance

will not be achieved is 0.3, and the power P of the test is therefore 0.7.

Symbol Description Effect on power

P Power of the test n/a

δ True or detectable difference As δ increases, power increases
α Significance of test As α increases, power increases

σ Standard deviation of deltas As σ increases, power decreases

n Sample (topic set) size As n increases, power increases

Table 5.1: Components of statistical power, along with their effect on the power of a

test.

positive error. The experimenter can adjust α to reflect how averse they are to this risk.

The converse risk, of failing to find significance when a difference between the systems

does in fact exist, is termed a Type II or false negative error, and the probability of it

occurring is denoted by β. To calculate a value for β, an alternative hypothesisHa must

be posited, stating a hypothesized difference or true delta δ between the two systems.

The obverse of the false negative risk β is the probability 1 − β of a true positive,

givenHa: that is, the probability P that significance will be found if the true difference

between the systems is δ. This true positive probability is known as the power of a test.
Figure 5.1 illustrates the relationship between α, β, and P .
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5.1.2 Calculating and predicting power

The power P of a test is determined by several quantities. First is the true score dif-

ference δ between the systems under the alternate hypothesis, which becomes the de-

tectable difference under the test. The smaller δ is, the more difficult it is to detect, and,

for a given set of topics, the weaker the test. The choice of δ is up to the experimenter;

it might be the minimum difference they wish to detect, or the hypothesized result of

the experiment they intend. Broadly, we talk of a consequential difference. Note that

a consequential difference is not necessarily significant, or vice versa, but that the goal

of power analysis in experimental design is to ensure that consequential differences are

found to be significant. The power of the test also depends on the significance level α,
the risk of a false positive: the lower the risk of a false positive, the greater the risk of a

false negative. Power further depends on the variability of the per-topic score deltas, as

measured by their standard deviation, σ: the greater the variability, the more difficult

it is to find significance, and hence the weaker the test. And finally, power depends

on the size of the sample, n, which here is the number of topics: the larger the sam-

ple, the greater the power. In many experimental situations, including that of retrieval

evaluation, only the factor of sample size is directly under the experimenter’s control,

although other choices (such as the metric used, for instance, or the depth of evalua-

tion) may indirectly affect the standard deviation of the score deltas. These factors are

summarized in Table 5.1.

The precise relationship between the different components of the power analysis

depends upon the significance test employed. With large samples (for example, 30
or more topics), the t distribution approaches the normal distribution; the power of a

large-sample, two-sided, paired t test can be approximated using Φ, the cumulative

distribution function (CDF) of the normal distribution, as follows:

P ≈ Φ

(√
n · δ

σ
− z1−(α/2)

)

(5.1)

where z1−(α/2) is the 1− (α/2) quantile of the normal CDF (for instance, z1−(α/2) =
1.96 for α = 0.05); the division by 2 is because this is a two-sided test. We can see

from Equation 5.1 that to maintain the same power while halving the detectable delta,

or handling twice the standard deviation, requires quadrupling the sample size.

While Equation 5.1 is expressed as calculating the test’s power P (that is, the prob-

ability of reliably detecting the specified δ), any one of the values in Table 5.1 is de-

termined by specifying the other four. In particular, the experiment designer is often

faced with the question of how many sample units (here, topics) are necessary to de-

tect a given score delta. The significance level α and the power P are selected by the

experimenter; common values are α = 0.05 and P = 0.8, implying that the experi-

menter regards a false positive as being four times as serious as a false negative. The

standard deviation σ must also be determined; this is the subject of much of the rest

of the chapter. Given these values, the experiment designer is faced with a calculation

like that shown in Figure 5.2. If σ is 0.13, for instance, then it takes some 55 topics

to reliably detect a score delta of 0.05, but 150 topics to detect a delta of 0.03. If σ is

0.19, however, 150 topics is only sufficient to detect a delta of 0.044. (As we shall see,
Figure 5.2 displays σ values representative of AP score deltas.)

The chief problem facing the experiment designer in predicting statistical power us-

ing a formula like Equation 5.1 is to estimate σ, the standard deviation of values in the
population being sampled. For domains in which the experimental subjects are com-

mon and well-studied, this value may be known; the standard deviation of the survival
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Figure 5.2: Detectable true delta δ, with power 0.8 at significance level α = 0.05, as a
function of number of topics, for different standard deviations, on a paired, two-sided

t test.

time of a certain breed of laboratory mice, for instance. For comparative effectiveness

experiments, however, the relevant values are the score deltas between a particular pair

of retrieval systems under the chosen metric, and the standard deviation between these

two systems will not be known before the experiment is run. Indeed, frequently the

comparison will be between a known baseline and a newly developed system, the lat-

ter of which may never have been subjected to any properly controlled experimental

comparison. Moreover, a competitive baseline would be a reasonable implementation

of the current state of the art (although it will be observed in Chapter 8 that competitive

baselines are not typical of recent evaluation practice), making the delta in prospect

modest, and the question of experimental power acute. In such circumstances, can the

standard deviation be reliably predicted from that observed in the past between other

system pairs? If not, what method should be used to arrive at an estimation?

5.1.3 Effect size

Instead of quantifying a consequential difference between two systems by raw score

delta δ, the experimenter can do so in terms of delta normalized by standard deviation,

or effect size:

ES =
δ

σ
. (5.2)

Normalization by standard deviation makes effect size a unitless metric, or at least one

expressed in units of standard deviations, applicable to any experimental population.

With significance level α and power P selected, effect size becomes purely a function

of the sample size n (refer back to Equation 5.1), no matter what the experimental

subjects are. Rules of thumb for generalizing effect size strengths have been proposed.

For instance, Cohen (1988) tentatively classifies an effect size of 0.8 as representing a

large effect, of 0.5 a medium effect, and of 0.2 a small effect.



CHAPTER 5. STATISTICAL POWER IN RETRIEVAL EVALUATION 122

50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Number of topics

E
ff
e
c
t 
s
iz

e

Large effect, 14 topics

Medium effect, 33 topics

Small effect, 198 topics

Figure 5.3: Effect size as a function of number of topics. Effect size is defined as δ/σ,
the true mean score delta, normalized by the true score delta standard deviation. The

significance level α is set to 0.05, and power P is set to 0.8. The number of topics

necessary to reliably detect the rule-of-thumb levels (proposed by Cohen (1988)) of a

large, a medium, and a small effect are marked.

Given standard values of α = 0.05 and P = 0.8, Figure 5.3 displays effect size

as a function of sample size. From this we can see that a standard, 50-topic TREC

test collection is sufficient to reliably detect a medium effect, but 200 topics would

be needed to reliably detect a small effect. Cohen’s classifications of effect size are,

however, only rough guides, as he himself acknowledges, and what counts as a con-

sequential effect still depends on the experimental context and metric. For instance,

as technology matures, we might expect the score deltas between baseline and inno-

vative systems to narrow, but whether the standard deviations of these deltas would

also narrow in proportion is not obvious. The experimenter can avoid the technical

necessity of estimating σ by expressing the hypothesized consequential effect in terms

of effect size; but a principled choice of a consequential effect size still requires an

estimation (formal or otherwise) of the relationship the between score deltas and the

standard deviations of the systems under comparison. In this chapter, we assume that

the researcher is quantifying effect in absolute terms, and therefore needs to estimate

population standard deviation during the experimental design phase.

5.2 The power of TREC collections

The natural first choice of an IR experimenter is to use an existing test collection, such

as those created by TREC and similar efforts. In this section, we examine the power of

the TREC collections, as observed on the TREC participant systems. We have already

seen that, under a common rule-of-thumb, TREC collections are not large enough to

detect small effects. The purpose of the current section is to determine whether these

collections are sufficiently powerful to detect achievable improvements in a mature

technology.
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Test Set
AP delta σ Detectable δ

Median 95% Median 95%

TREC 3 AdHoc 0.147 0.198 0.059 0.080

TREC 4 AdHoc 0.173 0.220 0.070 0.089

TREC 5 AdHoc 0.170 0.241 0.069 0.097

TREC 6 AdHoc 0.199 0.259 0.080 0.105

TREC 7 AdHoc 0.151 0.207 0.061 0.084

TREC 8 AdHoc 0.159 0.226 0.064 0.091

TREC 9 Web 0.170 0.225 0.069 0.091

TREC 2001 Web 0.141 0.202 0.057 0.081

TREC 2004 TB 0.135 0.185 0.055 0.075

TREC 2005 TB 0.143 0.191 0.058 0.077

Average 0.159 0.215 0.064 0.087

Table 5.2: Median and 95th percentile of standard deviation of per-topic, between-

system AP score deltas, for different TREC tracks, across all systems that participated

in each track. The two right-hand columns show the minimum true AP delta detectable

with power P = 0.8 and significance level α = 0.05 using 50 topics given these

standard deviations.

Once the significance level, power, and number of topics has been set, the de-

tectable delta under a power analysis depends on the standard deviation, σ, of the
per-topic score deltas between the pair of systems being compared. The value of σ
varies for different system pairs, but for each particular TREC runset, the distribution

of σ values can be empirically observed, for the set of topics included in the collection.

Table 5.2 gives the median of these σ values under the APmetric for the participant sys-

tems from several tracks of TREC. These medians differ noticeably from one TREC to

the next, but the overall average is around 0.16. For a standard deviation σ of this size,

a collection of 50 topics can reliably (P = 0.8) detect a true δ of around 0.064. The
largest usable topic set, that of the TREC 2004 Robust track, has 249 queries; this is

enough to detect a δ of 0.028 for a σ of 0.16. But this is only the mean σ value for these

datasets. The 95th percentile value, which might be considered worst case, averages

0.215, making only a δ of 0.087 reliably detectable with 50 queries, or of 0.038 with

249. Such score deltas are frequent enough across the full runset. For instance, the me-

dian delta between TREC 8 systems under AP is 0.082; 57% of observed score deltas

on this runset would be reliably detectable, using only 50 topics, with the average-case
σ of 0.16, and 48% even with the worst-case σ of 0.215. But these are gross figures,
across a runset that includes hand-crafted manual runs at one end and faulty runs at the

other; as will be examined shortly, incremental improvements on reasonable baselines

are likely to produce much smaller score deltas.

A natural question is whether σ varies with the mean delta. One might suppose, for

instance, that system pairs that have smaller mean deltas would tend to have smaller

standard deviations; that is, that smaller improvements are (in absolute terms) less

variable. This is an important consideration, because it would mean that incremen-

tal improvements are easier to find significance for than the overall mean σ estimate

suggests. Figure 5.4 graphs the relationship between σ and mean delta for the TREC

2004 Robust runset. The figure shows that, for this data set at least, there is a rela-
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Figure 5.4: Relationship between standard deviation and mean of between-system per-

topic AP scores deltas on the TREC 2004 Robust Track systems. Each dot represents

the mean and standard deviation of the AP score deltas on Topics 301–450 between a

pair of non-description-only TREC 2004 Robust systems. The line of best fit is also

drawn; it has intercept 0.131 and slope 0.233.

tionship between the mean delta and σ, but only a slight one. At mean deltas close to

0, the average σ is around 0.13; at a mean delta of 0.1—a relatively large difference

between systems—the average standard deviation is around 0.15. Of course, particu-
lar incremental improvements in real experiments may have lower standard deviations,

for instance if they only affect a small number of topics; but in general, it cannot be

assumed that small improvements will lead to much lower variability than large ones.

Rather than the gross comparisons across a full TREC runset, a more realistic setup

for a laboratory experiment is one in which the researcher is comparing their (hope-

fully) improved experimental system against a reasonably strong baseline. One way

of approximating this baseline–experimental comparison on the TREC runsets is to

treat second-quartile systems as candidate baselines, and for each baseline, any of the

systems scoring higher than it as an experimental system; only cases in which experi-

mental systems outscore baselines are considered. It is also necessary to reconsider σ
estimates for baseline–experimental pairs; it may be that these pairs are less variable

than are all system pairs as a group. Taking the TREC 8 dataset as an example, the

median σ for baseline–experimental pairs is 0.138, which is slightly less than the over-
all mean of 0.159, although the 95th percentile is hardly changed at 0.221. Average

score deltas, however, are much lower for baseline–experimental pairs than for all sys-

tem pairs as a whole, as is to be expected, given that only top-half systems are being

considered. The median of the mean score deltas for baseline–experimental pairs is

0.032, compared to 0.082 for all systems. Only 23% of these baseline–experimental

pairs are reliably detectable in the mean case, and only 14% in the worst case (95th

percentile σ). To reliably detect the median baseline–experimental δ of 0.032, given
a median σ of 0.138, requires 145 topics. Table 5.3 gives figures for other TREC test

sets. There is a fair amount of variability in these results, but in most cases a topic
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Test Set
AP delta # Topics

Required
Mean σ

TREC 3 AdHoc 0.051 0.136 58

TREC 4 AdHoc 0.034 0.165 188

TREC 5 AdHoc 0.045 0.171 118

TREC 6 AdHoc 0.042 0.207 192

TREC 7 AdHoc 0.038 0.149 120

TREC 8 AdHoc 0.032 0.136 145

TREC 9 Web 0.033 0.166 197

TREC 2001 Web 0.020 0.138 375

TREC 2004 TB 0.047 0.125 57

TREC 2005 TB 0.033 0.113 95

Table 5.3: Median of score delta mean and standard deviation for baseline–

experimental system pairs across different TRECs under the AP metric, and the num-

ber of topics required to achieve power of 0.8 at significance level 0.05 on a two-tailed,
paired t test given the median delta and standard deviation. A baseline system is a

system in the second quartile by mean AP score; an experimental system is any system

that scored better than a baseline system.

set of at least 100 topics, and in some cases closer to 200 topics, is necessary to reli-

ably distinguish a competitive, second quartile baseline system from a representative,

better-than-baseline experimental system.

The preceding analysis consists of only an approximation of what might be the delta

and deviation characteristics of a realistic research baseline–experimental comparison.

Nevertheless, it strongly suggests that the 50-topic TREC collections are simply not big

enough to reliably detect the kind of incremental improvements that one should expect

to see in a well-established technology such as information retrieval. It is interesting

to consider what effect this has had upon the recent development of technology in the

research arena; some evidence for this will be examined in Section 8.2.2. At the very

least, experimenters should seek to aggregate as many topic sets as possible over the

one corpus, as is done with the 249-topic TREC 2004 Robust collection.

5.3 Estimating delta deviation

The previous section analyzed the statistical power of TREC collections, concluding

that the 50 topics they typically contain is insufficient to reliably detect incremental im-

provements in system effectiveness. In this section, we turn to examining how the ex-

periment designer should determine the size of the topic set that is required for reliable

experiments. As mentioned before, the choice relies primarily on the estimation of the

standard deviation of score deltas between (previously uncompared) retrieval systems.

We discuss three ways in which this estimation can be made. The first (Section 5.3.1) is

based upon previous performance and knowledge; the second (Section 5.3.2) is through

the use of a trial experiment; and the third (Section 5.3.3) is by iteratively increasing

the sample size, updating the estimation of standard deviation at each iteration.

The main data used in this section is the set of participant runs from the TREC 2004

Robust Track, over Topics 301–450, excluding the description-only runs. Topics 601–
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Figure 5.5: Distribution of standard deviations of between-system per-topic AP score

deltas, for the TREC 2004 Robust Track runs. Plotted are the 3,003 standard devia-

tion values for the AP score deltas between each of the 3,003 pairs produced by the

78 TREC 2004 Robust Track non-description-only runs on Topics 301–450. The mean

and standard deviation are shown. The standard deviation of this distribution (of stan-

dard deviations) is 0.030.

700, from the TREC 2003 and TREC 2004 Robust sub-collections, are excluded in

order to maximize topic homogeneity; as was observed in Section 4.6.3, these topics

have smaller and less diverse pools. The description-only runs are removed from the

runset because the description fields of Topics 301–350 (taken from the TREC 6AdHoc

collection) do not contain all topic keywords, leading to anomalously poor performance

for description-only runs on these topics.

5.3.1 Based on previous experience

Faced with the task of design-time power analysis, and needing to estimate the likely

standard deviation σ of score deltas between a baseline and an experimental system, the

experimenter might first turn to past experience as a guide. What exactly constitutes

past experience is difficult to quantify, and will vary between different experimental

setups. There are, however, two broad questions. First, is there a single standard

deviation of score deltas for a metric, shared by all system pairs, than can be applied in

each experimental environment—or at least a close approximation to it? And second, if

there is no single standard deviation, then how wide are the bounds that past experience

might set upon the deviation likely to be observed in a proposed experiment?

First is the question of whether all system pairs share the same (or approximately

the same) σ of score deltas—that is of whether there is, for instance, a single σ of AP

score deltas. It was observed in Table 5.2 that deviations vary both within and between

TREC data sets. Figure 5.5 gives the full distribution of AP delta σ between each of

the 3,003 non-description-only system pairs in the TREC 2004 Robust Track, again

showing that σ is by no means the same for every pair of systems. This does not in
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Algorithm 5.1 Determine p value of observed σ dispersion, and mean resampled dis-

persion

D = {dijk}, an array of score deltas, where dijk is the delta between the ith and the
jth system on the kth topic; ns is the number of systems, nt the number of topics,

and R the number of times to repeat sampling

np ← (ns(ns − 1))/2 ⊲ number of system pairs

σ ← sd({sd(dij∗) : i > j}) ⊲ dispersion of observed distribution

P ← {dijk − dij∗ : i > j} ⊲ create pool of mean-adjusted deltas

Σ∗ ← {}
for r ∈ {1, . . . , R} do

Vr ← {}
for s ∈ {1, . . . , np} do

Vr ← Vr ∪ sd(sample(P, nt)) ⊲ sd of sample of virtual system pair

end for

Σ∗ ← Σ∗ ∪ sd(Vr)
end for

p← |{σ∗ ∈ Σ∗ : σ∗ > σ}| /R ⊲ p value is proportion resamples > original

return Σ
∗
, p

itself disprove the hypothesis of a common population σ, because that deviation would
apply across the entire (nominal) population of topics, and in each of the above cases

what is observed is only the deviation on a sample. Just as different samples from

the one population can give different means, so too they can give different standard

deviations. But testing the null hypothesis that different system pairs have the same

AP delta σ, using the resampling method described in Algorithm 5.1, rejects this null

hypothesis with confidence α = 0.001. The mean dispersion of the resampled stan-

dard deviations, under the hypothesis of common deviations, is 0.015, compared to the

observed dispersion of 0.030 in Figure 5.5. We can definitely conclude that different

system pairs have significantly different score delta deviations. There is no single σ of

AP score deltas for the experimental designer to rely on.

Given that the score delta σ is significantly different between different system pairs,

the experiment designer can only rely on past experience to provide at best a distribu-

tion over possible σ values for a new pair of systems that are to be compared. The

nature of this distribution, and the confidence that the designer can place in it, will vary

from situation to situation. Nevertheless, the TREC datasets can be used as a reason-

able example of what such an approach might entail. Consider an experiment designer

who is testing a new system against a TREC run, on a TREC collection—or, more gen-

erally, an experimenter working in an environment that provides a similar (rather high)

degree of past information about score deltas. The designer could then take the median

σ observed on past system pairs in that data set as their estimate. Table 5.2 indicates

that this is useful information, since the median does change from test set to test set.

But the differences between test sets are relatively small compared to the variability

of σ within a test set. From Table 5.2, the 95th percentile σ is roughly 35% higher

than the median. Thus, if the designer were to choose a topic set size based on the

median σ, they would run a substantial risk that the achieved power was well below the

desired level. On the other hand, based on Equation 5.1, handling the pessimistic case

of a 95th percentile σ, roughly 35% higher than the median, requires 80% more topics.

That is to say, the high variability of score delta σ means that the experimenter faces a
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Figure 5.6: Theoretical (line) and empirical (point) 95% confidence interval, estimat-

ing score delta σ from a sample of 30 topics, based on the TREC 2004 Robust systems.

The metric is AP.

dilemma: aim for the mean and have a high risk of insufficient power; or substantially

remove that risk but expend almost twice as much assessment effort as, on average,

will eventually turn out to have been necessary.

5.3.2 Based on trial experiments

Past experience being an unreliable guide, the experiment designer might turn next

to the use of a trial experiment. The idea behind trial experiments is to use a small

sample to estimate features of the subject population, and then use these estimates to

design the full experiment. The main estimate of interest is of the population σ, but
the designer might also use the trial experiment to gauge the range of the delta, and of

course also to try out other elements of the experimental design; these later issues will

not be considered further here. We are concerned in particular with trial experiments in

which the topics used in the trial are not re-used in the full experiment; re-using topics

leads to a situation similar to the iterative approach discussed in Section 5.3.3.

When designing a trial experiment, one must consider, first, how many topics to in-

clude in the trial, and second, how to use the estimate of σ that the trial produces. The

fewer the trial topics, the cheaper the trial, but the less reliable the estimate; conversely,

increasing the number of topics in the trial makes the estimate more accurate, but the

trial more expensive. Assuming the trial topics are sampled from the same population

as the full experiment, and that other experimental parameters are the same, then the

single most likely estimate of the standard deviation of the population will be that ob-

served on the sample in the trial. This estimate will, however, have a standard error to

it, which can be derived from the observed variability of the sample and from the size

of the trial experiment. Taking the mean as the estimate is risky; taking a higher per-

centile of the sampling distribution is safer, but results in a more expensive subsequent

experiment.
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Figure 5.7: Total number of topics assessed, following trial experiments of different

sizes, which produce different estimates of standard deviation, where the final experi-

ment requires power of at least 0.8 on δ = 0.033 at α = 0.05, with 95% confidence.

An expression for the likely error in an estimate of population standard deviation

taken from a sample, such as that used in a trial experiment, can be derived as follows.

Assume that the sample, of size n, is drawn from a normal population with mean µ and

variance σ2; let s denote the standard deviation of the sample. It can be shown that the

sample standard deviation is, for large enough n, roughly normally distributed, with

standard error of approximately (Kirkup and Frenkel, 2006):

σS =
σ√
2n

. (5.3)

In practice, metric deltas are not normally distributed; moreover, trial experiments are

potentially not large enough to justify the normal approximation of the sampling dis-

tribution. Figure 5.6 shows the theoretical 95% confidence intervals given by Equa-

tion 5.3, and the empirical quantiles on the TREC 2004 Robust Track systems, for

samples of 30 topics. The figure indicates that the formula underestimates the variance

of the estimator. Nevertheless, Equation 5.3 is useful to inform our discussion.

Consider an experiment designer who has run a trial experiment, derived an esti-

mate of σ, and wishes to choose a topic set size for the full experiment that will cover

the 95th percentile of the estimate’s distribution—the same degree of conservatism

posited for the designer working from previous experience. Under the normal distri-

bution, the 95th percentile of values falls 1.64 standard deviations above the mean.

Therefore, based on Equation 5.3, for a trial experiment of (say) 20 topics, the designer
would take an estimate around 25% greater than the observed standard deviation of the

trial. This is slightly less than the 35% margin of error that the TREC runsets required;

but then, the experimenter has already spent 20 topics to arrive at that estimate.

The margin of error from the trial experiment, and therefore the cost of the full

experiment, can be decreased by increasing the trial’s size. From Equation 5.3, the

error can be halved by quadrupling the trial topic set. After a point, however, the
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additional cost of the trial experiment outgrows the savings on the full experiment.

Figure 5.7 shows the total number of topics assessed in a conservative (95% coverage)

experimental setup, for different trial sizes and estimates of standard deviation. The

optimal trial size itself depends on the standard deviation of the population—a circular

problem—but falls in the range of 20 to 50 topics for the σ observed for average preci-

sion deltas. Beyond this many topics, the increased accuracy of the estimate does not

justify the additional cost. For each actual standard deviation, the minimum full topic

set size needed for confidence in achieving post-hoc power is 60% to 80% greater than

that needed in the average case. For instance, for a mean σ estimate of 0.15, the optimal

trial size is 40 topics, and gives an 95th percentile σ estimate of 0.178. To cover this

percentile requires an experimental set of 231 topics, which, when added to the trial

topics, makes a total expense of 271 topics. In the mean, however, a σ of 0.15 only

requires 164 topics to achieve the desired power. The conservative approach uses 65%

more topics than will, on average, prove necessary. It was observed in Section 5.3.1

that basing estimates on previous experience, at least as represented by a TREC test

set, requires an 80% overestimate on the topic set size. Therefore, the trial experiment

approach achieves only slightly better efficiency. It does, however, have the advantages

that it does not depend on the availability and reliability of previous experience, and

that the trial can yield other useful information about the experimental setup.

In the case that the corpus of an existing collection is suitable for an evaluation

experiment, but not its topics (if only because the topic set is too small), it is possible

to use the existing topics and qrels for the trial experiment, and develop and assess

new topics for the full experiment. Re-using the existing topics for the trial leads to

an obvious saving of effort; and, as has been observed above, the fifty topics of a

typical TREC collection should be enough to give a reasonable estimate of score delta

standard deviation. The experimenter does not, however, know how representative trial

conditions are of the full experiment, since the trial and full topics are not derived

from the same source, nor their assessments. The reliability of the trial experiment is

even less assured if the full experiment is to be performed on a different corpus as well.

Nevertheless, as a pragmatic step, performing trials on one or more existing collections,

even if imperfectly aligned with the final test environment, is likely to provide valuable

insight into comparative system behaviour for the full experimental design.

5.3.3 Based on iterative estimation

A conservative choice of topic set size, based either on past experience or on a trial

experiment, leads to far more topics being used and assessed than in the mean case

will prove to have been necessary, because the experiment designer is faced with a

highly variable estimate of standard deviation, and, to be safe, must choose a high

percentile. The preceding discussion, however, has implicitly assumed that the choice

of topic set size must be made once, and the full experiment (and no more) be run

based on that choice. In many fields of research, this assumption is true; it may not

be possible, for practical or theoretical reasons, to add new subjects to a sample if it

proves to be too small—or to cut an experiment short if the planned sample size turns

out to be excessive. But this constraint does not, at least at first sight, seem to apply to

comparative retrieval experiments. It would seem admissible to start with a small topic

set, and keep increasing it until the desired experimental power is achieved.

A method for the iterative estimation of experimental power is described in Algo-

rithm 5.2. The method is simple. The consequential score delta which needs to be

reliably detectable is specified at the start of the experiment; the experiment will con-
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tinue until sufficient power to detect this delta is achieved. A topic at a time is added

to the topic set (in practice, one would start with at least the minimum number of top-

ics required for the significance test to be meaningful) . The documents returned for

that topic by the systems under comparison are assessed for relevance, and the systems

are evaluated against the topic. The σ of score deltas is determined, and from that

the current power of the experiment. If this power is sufficient to detect the specified

delta, then the experiment is complete, and a final evaluation and significance test is

performed; if power is insufficient, another topic is added, and power is tested again.

The great advantage of the method presented in Algorithm 5.2 is its efficiency: the

desired experimental power is precisely achieved with a minimal number of topics.

This is in contrast to the previously discussed design methods, which choose the topic

set size once, and therefore need to make a high estimate, to reduce the risk of failing

to achieve power. Even then, the once-off estimation methods are not guaranteed to

achieve the desired power, whereas the iterative method can be continued until this

power is achieved.

It is important to note that the goal of Algorithm 5.2 is to achieve power, not sig-

nificance. The method would be seriously flawed if, in addition to power, significance

was checked for after each topic had been added, and the iterations halted if signifi-

cance was achieved before power. Such an approach leads to a bias in favour of finding

significance; any prefix of topics that achieves significance will lead to a significant re-

sult, even if the full topic set (the set which achieves the desired power) does not. This

bias can be observed empirically. Take the TREC 2004 Robust system pairs where

a comparative evaluation under AP over Topics 301–450 leads to a p value between

0.05 and 0.10; that is, system pairs that do not quite achieve significance on the full

topic set. There are 137 such system pairs. If an iterative topic inclusion method is

used, and significance is checked after every topic subset from 50 topics on, then on

one random trial almost two-thirds (89) of these system pairs are found significant at

level α = 0.05 on at least one of the topic prefixes. In other words, the possibility

of false positives is greatly increased by such repeated testing, although the methods

of sequential analysis (Mukhopadhyay and de Silva, 2009; Siegmund, 1985) could be

deployed to compensate for this bias.

Testing significance under the iterative method after each topic is added to the topic

set is clearly biased; but testing power, through re-estimating score delta σ, might not

appear to be. Repeatedly testing for power is, however, subject to a similar, although

more subtle, form of bias. The stopping condition of the iterations is when power is

achieved, which means in effect when the current number of topics is sufficient for

the existing standard deviation estimate. This means that sampled topic sequences

that happen, by chance, to have lower standard deviations, will achieved power earlier,

and hence result in smaller topic sets. Conversely, sequences with higher standard

Algorithm 5.2 Iterative sampling

Input: δ, the target detectable true delta
d←∞, T ← {}
while d > δ do

T ← T ∪ {sample(T )}
d← calcDetect(T )

end while

Perform significance test
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Figure 5.8: Proportional frequency of inclusion against per-topic delta for Topics 301–

450 comparing fub04Tge and polyutp1 from the TREC 2004 Robust Track, as aver-

aged over 20,000 random trials. Each trial randomly samples topics without replace-

ment until a test power of 0.8 for a true delta of 0.06 is achieved. The mean delta is

marked with a vertical line.

deviations will continue for longer. Lower deviations occur when topics have score

deltas more similar to each other, and so are (in general) more typical of the population

as a whole. Therefore, although the sampling probability is uniform across topics, the

probability that a given topic will be included in a topic set is higher for topics whose

score delta is closer to the norm for the population.

The inclusion bias for topics under iterative sampling is demonstrated empirically

in Figure 5.8. The iterative power estimation method is repeatedly employed to achieve

a specified degree of power in the comparison of two TREC 2004 Robust Track sys-

tems, and the proportion of topic sets that each topic is included in is recorded. Dif-

ferent topics have significantly (at level α = 0.01 in a χ2 test on proportions) different

chances of being included in an iteratively sample topic set. Those topics whose score

deltas are more typical of the population have a higher likelihood of inclusion, whereas

atypical topics have a much lower one.

If topics with more typical deltas are more likely to be included in an iteratively-

sampled topic set, then that sampled topic set is likely to have a lower standard de-

viation than the population of topics as a whole. That is, iterative sampling is biased

towards underestimating standard deviation. On the other hand, at least where delta

distributions are balanced, and the typical delta values cluster around the mean delta

(as in Figure 5.8), then the estimation of the mean will not be (noticeably) biased.

The extent of the bias in the estimation of σ depends on the distribution of the pop-

ulation. Figure 5.9 shows the empirical bias observed on actual TREC 2004 Robust

Track system pairs. To simulate a baseline–experimental comparison, a second quar-

tile run is randomly selected as the baseline, then a different run from the top three

quartiles as the experimental system. Note that this differs from the method of choos-

ing baseline–experimental pairs used in Section 5.2, in which the experimental system
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Figure 5.9: Mean σ estimates using the iterative sampling method, compared to ac-

tual σ, for AP score deltas between 100 randomly selected baseline and experimental

system pairs, drawn from the TREC 2004 Robust Track systems, on Topics 301–450.

Baseline systems are sampled from the second quartile of runs by AP, while experi-

mental systems are sample from the top three quartiles. The dotted line is the line of

best fit, which has slope 0.965. The solid line marks estimated = actual.

was always superior to baseline: then, we were testing to see what real improvements

could be missed; now, we relax the restriction on experimental systems, in order to test

rates on two-tailed significance. The iterative power estimation method is employed

until estimated power, on the sampled topics, is equal to the mean power for that sys-

tem pair over 100 topics. This is done repeatedly, and the mean estimate of σ noted.

Topics are sampled with replacement to simulate sampling from an infinite population.

The mean σ estimates of the iterative method understate the true standard deviations by

3.5% on average. Increasing the sampling step size decreases bias only slightly; adding

40 topics to the topic set per iteration leads to an average underestimate of 2.8%. The

estimates of the mean, though, are unbiased.

Underestimating the standard deviation of the population under the iterative topic

sampling method leads to experimental topic sets with higher apparent power that pure

random sampling would. Fairly estimating mean deltas at the same time means that

the experiments are biased towards achieving statistical significance. The bias to-

wards false positives in significance can be empirically demonstrated. Again, baseline–

experimental pairs are randomly selected. But this time, the raw score deltas are trans-

lated by subtracting the mean score delta for each system pair. This shifts the translated

mean score delta to 0, which simulates the null hypothesis of no mean difference. Top-

ics are sampled with replacement, to simulate sampling from an infinite population.

Iterative sampling is performed until power is achieved, and the proportion of the topic

samples that achieve (false) significance is recorded. Uniform random sampling of

topic sets of the same size is also performed, and false positives noted on these sets.

This allows us to compare the false positive rates from the uniform random and iterative

sampling methods.
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Figure 5.10: Proportion of false significance readings for iteratively sampled topics

compared to uniform randomly sampled topics. Each point compares the false signif-

icance rate of these methods, on one of 25 randomly sampled baseline–experimental

system pairs. The system pairs are sampled from the TREC 2004 AdHoc Track. The

per-topic score deltas of each pair are shifted to a mean delta of 0. A total of 5,000 sam-

ples are performed per pair. The baseline system is sampled from the second quartile,

the experimental from the top three quartiles.

The empirical false positive rates of the random and iterative sampling methods

are shown in Figure 5.10, for 25 baseline–experimental system pairs drawn from the

TREC 2004 Robust Track runset. The mean false positive rate for true random sam-

pling is 0.0501, almost precisely the expected false positive rate under the α = 0.05
significance level. For iterative sampling, however, the mean false positive rate is some

10% higher, at 0.0558. Moreover, the false positive rate for iterative sampling is higher

than that for true random sampling in 20 of the 25 system pairs. A two-tailed paired

Wilcoxon test finds these differences significant at level 0.001.
The iterative estimation method, therefore, while efficient in its use of topics and

easy to implement, leads to a bias in favour of both experimental power and signifi-

cance. Our experiments suggest, though, that the degree of this bias is slight. On the

dataset employed, and with the experimental parameters used, the bias in p values is

around 10%; it may be different for other contexts.

5.3.4 Suggested methodology

Faced with a pair of systems to evaluate on new topics, a researcher rich in relevance

assessment resources and armed either with strong previous experience or the results

of a trial experiment can proceed to make a single, conservative estimate of σ and

assess the full (and generally large) set of topics necessary to be confident of achieving

the desired power. A poorer but theoretically fastidious and temperamentally stoic

researcher might take an average estimate and risk variability turning out to exceed that

estimate and rendering the experiment inconclusive. Or the researcher might abandon
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absolute measures and express consequential effect in terms of effect size, with its

attendant limitations and vagueness. Any of these approaches will enable the statistical

significance of the experiment’s results to be tested and reported with the minimum of

caveats.

However, for a researcher with scarce assessment resources who wishes to quan-

tify consequential effect in absolute terms and is (understandably) unwilling to risk

an inconclusive experiment, we suggest a hybrid approach. This method constitutes a

pragmatic form of sequential analysis (Mukhopadhyay and de Silva, 2009; Siegmund,

1985), though one aimed at the intermediate target of statistical power, rather than the

ultimate target of statistical significance. The predicted or consequential δ must be

stated at the outset. An initial best (non-conservative) estimate of σ should be made,

either through experience and a judgment of the likely similarity of the two systems,

or using a trial experiment (whose topics, under the hybrid method, can be reused).

The indicated number of topics should then be assessed, and the systems evaluated. If

desired power has not been achieved, then σ should be re-estimated as the observed

sample standard deviation, and the indicated number of additional topics assessed and

evaluated. (Observed standard deviation is likely to be an overestimate of population

σ, since the only reason we are observing it is that it is higher, possibly by chance, than
our initial estimate; however, a slightly conservative estimate here is desirable to reduce

the number of iterations and hence the potential for bias.) This process is repeated until

power is achieved. Then, and only then, significance can be tested for.

The proposed methodology is assessment-thrifty and guaranteed to obtain the de-

sired power. The downside is that the reported significance is likely to be slightly

exaggerated. Naturally, the researcher needs to report this fact, and also that the ex-

act degree of bias is uncertain. The researcher further needs to state the experimental

methodology employed, including the δ used to calculate power, the initial topic set

size, and the number of iterations. This must be reported even if power is achieved by

the initial topic set, without the need for further iterations. The only reason in such

a case that there were no further iterations is because power was achieved; the subse-

quent significance test is not independent of this methodological choice, and will be

(mildly) biased.

5.4 Evaluation depth

We have so far dealt with power analysis as a tool for deciding the topic set size required

for an experiment. It also has a useful role to play in analyzing other features of the

experimental setup, such as the choice of metric and metric parameters. The choice

of metric affects both the consequential deltas that the experimenter might expect, and

also the variability that the per-topic deltas might display. What is desirable is that the

ratio between these (that is, the effect size) is as large as possible; this means that less

effort is required to achieve significance. Other researchers have quantified the effort

to achieve significance in terms of discriminative power, by calculating the proportion

of system pairs that are actually found significant in group experiments such as TREC

(Sakai, 2006); the significance rate, however, depends on the effect size, and this latter

value and its components, mean and standard deviation, are more amenable to analysis.

One of the most important metric parameters is the depth to which evaluation is per-

formed (or, for sampling-based methods, the number of samples made for each topic).

Greater depth of evaluation leads presumably to more stability, and hence a stronger

effect; but it also requires more relevance assessments, and relevance assessments are
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Figure 5.11: Observed effect size of AP at different evaluation depths. The mean

effect size along with the inter-quartile range is shown. A total of 1,000 baseline–

experimental system pairs are randomly selected from the TREC 2004 Robust Track

systems, and observed effect size calculated at each evaluation depth, with full pooling

to that depth (based on the official qrels). Baseline systems are sampled from the

second quartile, experimental systems from the top three quartiles. For each system

pair, AP scores are calculated to the specified depth, estimatingR only from the known

relevant documents found by the two systems to that depth.

the most expensive element in test collection formation. It may be more efficient over-

all to evaluate less deeply, but have more topics, particularly for collections that are

purpose-built for a particular experiment. Power analysis permits us to quantify this

trade-off. In particular, the measure of observed effect size will be used; this is, for a

pair of retrieval systems, the mean delta divided by the delta standard deviation across

a set of topics.

The first question to answer is how observed effect size changes with depth of eval-

uation. Figure 5.11 shows the range of observed effect sizes for different depths under

the AP metric, across a sample of TREC 2004 baseline–experimental system pairs. As

evaluation depth is increased, score deltas do become more consistent, leading to a rise

in observed effect size, and therefore in experimental power and likelihood of finding

significance. The effect, though, is only slight.

The number of documents that must be assessed for relevance in a paired experi-

ment is almost linear in the depth of the evaluation. Averaging across 100 randomly

selected baseline–experimental system pairs from the Robust Track experimental data

set, there are 151 documents to assess for depth 100 evaluation of the two runs, 15.7
for depth 10, 8.1 for depth 5, and 3.37 for depth 2. Thus, for two runs, there is roughly
the same document assessment effort in evaluating 50 topics to depth 100 as 900 topics
to depth 5. This assumes that there is no start-up cost for each topic, such for the asses-

sor to read and interpret it. Such an assumption is unrealistic, but is sufficient for the

current discussion; more complex models can readily be developed when the per-topic

start-up cost is known (see Carterette and Smucker (2007) for an example).
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Figure 5.12: Proportion of empirical experimental effect sizes detectable for different

number of documents judged with different assessment depths under AP. The distribu-

tion of effect sizes is taken from that observed on 1,000 baseline–experimental system

pairs randomly sampled from the TREC 2004 Robust Track systems. Power is 0.8, α
is 0.05. Baseline systems are sampled from the second quartile, experimental systems

from the top three quartiles.

The almost linear increase in assessment effort with evaluation depth, combined

with the only slight improvement in observed effect size (Figure 5.11), means that it

is far more efficient to spend effort on more topics than on deeper evaluation, as Fig-

ure 5.12 shows. Some 5,000 documents must be judged with depth 100 evaluation

for any of the observed effect sizes to be reliably detected as significant, whereas after

this many judgments 23% of observed effect sizes are detectable with depth 20 assess-
ment, and 56% with depth 5 assessment. This many judgments represent 33 topics at

depth 100, 161 topics at depth 20, and 617 topics at depth 5.
One reason to consider performing deeper assessments than the above analysis sug-

gests is to improve the reusability of the test topics. If the topics are later reused to test

new systems, then the deeper the initial assessment, the less likely it is that new sys-

tems will return unassessed documents. This is the primary motivation for the deep

assessment performed on the TREC collections. In a private lab, however, such depth

of assessment may be prohibitively expensive. In such an environment, the method

of score adjustment for correcting pooling bias, proposed in Chapter 6, offers a more

efficient and flexible solution.

5.5 Summary

We have investigated the use of statistical power analysis in IR experimental design and

interpretation. One of the main problems in design phase power analysis is predicting

the variability of between-system score deltas. We have demonstrated that there is no

single population of score deltas for any given metric, but rather a different population

for each pair of systems. Estimating delta variability from past experience or from trial
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experiments is inexact, and establishing reasonable confidence is expensive. On the

other hand, iterative re-estimation of test power leads to bias in favour of finding sig-

nificance, albeit a mild one. A hybrid approach is possible, but the experimenter must

be explicit about their methodology. The issue can be avoided if the experimenter is

able to specify predicted or consequential effect not as an absolute delta, but normal-

ized by standard deviation; that is, as an effect size (ES). Which option the researcher

should choose depends on their particular circumstances, but we propose the hybrid

approach as an efficient (if methodologically complex) default.

One of the great benefits of power analysis is that it forces the experimenter to

quantify the meaning of the experiment they are planning or have carried out. Contrary

to common assumption, failure to find significance does not mean that consequential

differences do not exist; one must examine the power of the test (or related measures,

such as the confidence interval on the result) to draw such conclusions. And before

performing an experiment, the researcher should consider what size of effect they ex-

pect, and whether the proposed test will detect it, even if they do not proceed to a more

formal estimation of delta standard deviation. Inconclusive experiments are the bane of

the scrupulous researcher, and trying one test collection (or metric) after another until

some meaningful outcome is achieved is not, to say the least, methodologically sound.

For the purposes of planning experiments, having a rough estimate of a metric’s

typical range of delta standard deviations, and of how much a good new system might

be expected to improve over a baseline, is valuable. In these terms, the 50-topic TREC

collections are distinctly unpromising from a power-analysis point of view: to reliably

distinguish a baseline (second-quartile) from an experimental (superior to baseline)

system, a set of 100 to 200 topics is generally required under the AP metric. At the

least, the experimenter should aggregate as many such collections together as possible

to boost test power, as has been done with the Robust test collection. And if the re-

searcher chooses or is forced to develop their own topics, then power analysis strongly

suggests that shallow assessment of many queries is more reliable than deep assessment

of a few.



Chapter 6

Score Adjustment for Pooling

Bias

Ideally, every document in a test collection would be assessed for relevance to each

query. In practice, exhaustive assessment is not feasible, due to the size of the docu-

ment corpus. Instead, a subset of documents is selected for assessment. The standard

method of selecting documents, used by collection formation efforts such as TREC, is

to pool the top-ranked results from the participating systems, and assess only the docu-

ments in the pool. The assumption is that such a pool should cover the majority of rel-

evant documents, so that unpooled documents can be assumed irrelevant. Increases in

corpus size have, however, made this assumption suspect, leading to concerns that rel-

evance assessments of pooled collections are seriously incomplete, and biased against

unpooled systems (Buckley et al., 2007). Moreover, even pooling requires a consider-

able assessment effort per topic, beyond the means of most research groups deploying

purpose-built collections. Such groups could make more efficient use of their resources

by performing shallow assessment of a larger number of topics; but then the issue of

pooling bias, if assessments are re-used to evaluate new systems, becomes still more

severe, because of the even sparser coverage of relevant documents.

In this chapter, we propose a novel solution to the problem of assessment incom-

pleteness and pooling bias. The basic approach is to empirically estimate the degree of

bias in a particular collection and experimental setup, and then apply a score adjustment

factor to the scores of unpooled systems to compensate for this bias. This adjustment

can be calculated directly from the existing fully pooled systems, without performing

any additional evaluation. We term this method bias inference from systems. Such in-

ference, however, assumes that the unpooled system is similar to the pooled ones. More

reliable is to fully assess all systems, existing and new, on an additional, small set of

topics; to directly observe pooling bias against the new system on those topics; and to

adjust the scores of the new system on the existing topics, for which it is unpooled, to

compensate for this bias. We call this approach bias inference from topics. The latter

approach is particularly suited to the dynamic collection of an ongoing development

project at a research group or private lab. Here, retrieval methods are being continually

developed and refined, and new topics added; meanwhile, a large number of legacy

topics, assessed for some but not all systems under development, remain available. In

such an environment, the assessments necessary for inference from topics are likely to

already exist, and the method can be applied without further effort.

139
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s r

z

Figure 6.1: Pooled and unpooled systems. Systems s and z are included in the pool,

and all documents returned by those systems are assessed for relevance. System r,
however, is unpooled, and documents uniquely returned by it are unassessed.

We begin in Section 6.1 with an examination of qrel incompleteness, existing meth-

ods of dealing with this incompleteness, and the pooling bias that these methods dis-

play. In Section 6.2, we describe bias inference and score adjustment from systems,

demonstrating that, while it works where systems are similar to each other, a high

degree of bias remains if the new, unpooled system is markedly different from the ex-

isting, fully-pooled ones. Therefore, we propose instead, in Section 6.3, to infer bias

and adjust scores based on a small set of common topics, fully assessed for all systems.

We demonstrate that such a method is effective for even a small set of common topics,

and is robust to heterogeneous systems.

6.1 Pooling bias

There has been considerable recent research interest in the subject of evaluation with

incomplete relevance assessment; a survey was provided in Section 3.4. Exhaustive

assessment being impractical, the traditional method of selecting documents for as-

sessment is to run a set of representative retrieval systems against the collection, and

pool their top-ranked results. Unpooled, and therefore unassessed, documents are as-

sumed to be irrelevant. Such a method is biased against unpooled systems: all relevant

documents located by pooled systems to assessment depth will be recognized, whereas

unpooled systems can return unassessed, but in fact relevant, documents; assuming

these to be irrelevant understates the effectiveness of the unpooled system. This is

commonly referred to as pooling bias. The pooling process, and the condition of un-

pooled systems, is illustrated in Figure 6.1.

Studies on the early TREC collections estimated the degree of pooling bias using

experiments in which a pooled system was removed from the pool, and its unpooled

score compared to its pooled one (Zobel, 1998; Voorhees and Harman, 1999). Such

studies concluded pooling bias is minimal, though Sanderson and Zobel (2005) later
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found greater bias if all of a team’s systems were held out, and even more so if a pool

of automatic systems was used to evaluate manual ones. But the increase in corpus

sizes since then makes it likely that the proportion of relevant documents found by

pooling is decreasing, and hence the incompleteness of qrel sets is increasing, poten-

tially worsening pooling bias. In particular, there is concern that, with large collections,

pools are filled with keyword-rich, easy-to-find documents, making collections sys-

tematically biased against novel retrieval methods that attempt to go beyond keyword

matching (Buckley et al., 2007). Even if the incompleteness of pooling were not an

increasing concern, it would be attractive to have an evaluation method that was robust

to incompleteness, so that less assessment effort could be expended on each topic and

more topics could be judged; we have already seen in Chapter 5 that a large number of

shallowly assessed topics achieves greater statistical power than a smaller number of

deeply assessed ones.

Rather than assuming unassessed documents to be irrelevant, a proposed alterna-

tive for dealing with qrel incompleteness is to ignore unassessed documents altogether

during evaluation. The Bpref metric is calculated only over assessed documents, with

unassessed documents not considered (Buckley and Voorhees, 2004). The approach

was extended to AP in the form of induced AP by Yilmaz and Aslam (2006), and then

generalized by Sakai (2007b) into the concept of applying any standard evaluation

metric to condensed lists; that is, lists from which unassessed documents have been

removed, with the remaining, assessed documents shuffled up to form a continuous

ranking. Unfortunately, condensed lists also suffer from bias, in this case in favour

of unpooled systems (Sakai, 2008). This is because, if a document is not returned by

pooling depth by any of the pooled systems, that is evidence in favour of its not being

relevant; removing it from the ranking of an unpooled system, and allowing another

document that was returned by pooled systems to take its place, replaces a document

less likely to be relevant with one more likely to be relevant.

Besides having opposite effects on unpooled systems, the respective biases of as-

sumed irrelevance and of condensed lists differ in other ways. First, the bias of assumed

irrelevance is strictly one-sided, while that of condensed lists is not necessarily so. That

is, assuming an unassessed document to be irrelevant can only be to the detriment of

an unpooled system’s score; ignoring it, while generally beneficial to the unpooled sys-

tem, is not always so, since it could be that the unpooled document is relevant and the

pooled document that replaces it when the list is shuffled up is not. A second differ-

ence is that, per unpooled document, the bias of assumed irrelevance decreases with an

increase in the size of the pool, whereas that of condensed lists increases. The reason

for this is the same for both methods: the larger the pool, the more likely it is that an

unpooled document is irrelevant. We empirically observe the effects of these different

bias characteristics in Section 6.1.2.

6.1.1 Materials

The data sets for the experiments reported in this chapter are the TREC 2004 Robust

Track collection and runset, as well as those for the TREC 8 AdHoc Track. The Robust

dataset is useful for the number of topics it includes. Participating systems were not

pooled for the re-used topics, however. To avoid confusion between documents un-

pooled in our experiments, and documents unassessed in the original dataset, we treat

all unassessed documents as if they had been pooled in the original dataset from the

systems returning them, but assessed as irrelevant. The AdHoc dataset is useful be-

cause, unlike the Robust set, it includes manual runs. The 13 TREC 8 manual runs find
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24% of the relevant documents, while the remaining 116 automatic runs find only 17%

between them (the remainder are returned by both categories of runs). Additionally, the

best 11 manual runs are also the best 11 systems altogether under many metrics. Man-

ual runs therefore have quite different characteristics from automatic ones. We observe

later that calculating the bias adjustment for heterogeneous systems is more demand-

ing than for homogeneous ones; this will be investigated by attempting to calculate an

unpooled manual system’s bias adjustment based on a pool of automatic systems.

The choice of metric for the following investigation is affected by several con-

siderations. First, we assume an environment in which only shallow assessment is per-

formed, as one of the motivations is to make such assessment reliable, thereby enabling

larger topic sets. Second, in our experiments, the qrel set will be changed frequently,

by the exclusion and inclusion of different runs. Varying the qrel set makes normal-

ized metrics unstable, as the estimated number of relevant documents will vary, too;

not just the newly-unpooled system’s score will be change, but also the scores of the

still-pooled systems. Third, a top-weighted metric is desirable, for the greater sensitiv-

ity it provides. Thus, we want a shallow, unnormalized and therefore precision-based,

top-weighted metric. The metric selected is what will be termed rank-biased precision,

truncated at ten (tRBP@10), with the parameter p set to 0.8. This metric is a variant of

RBP, using the base score, evaluated to depth 10 only, and with the rank weights scaled
to sum to 1. The rank weights are thus:

〈0.224, 0.179, 0.143, 0.115, 0.092, 0.073, 0.059, 0.047, 0.038, 0.030〉 .

The metric can be understood as a top-weighted version of precision at ten. Using

the base score of standard RBP would give the same results, aside from the scaling

factor. Experiments were also performed with the standard precision at ten metric,

and, allowing for its reduced sensitivity, achieved similar results.

The score adjustment methods described in this chapter use the mean system scores

of unpooled systems. The goal of these methods is to adjust a system’s unpooled score

to be the same as the system’s score would have been, had it been pooled. We evaluate

the effectiveness of the adjustment measures by experimentally unpooling a pooled test

system, calculating its adjusted unpooled score, and observing how close the adjusted

score is to the pooled score, and for comparison how close the unadjusted score is, too.

This is done multiple times, each time sampling a different unpooled system and set of

pooled systems. To summarize the overall effectiveness of the method, we calculate the

mean absolute error (MAE) over these randomly sampled experimental sets, as follows.

Let the number of random samplings be n. On the ith sample, let ti be the pooled score
of the test system selected for that sample, and si be the system’s unpooled (adjusted

or unadjusted score); then the MAE of the method is:

MAE =
1

n

n
∑

i

|ti − si| . (6.1)

Statistical bias is mean non-absolute error (Equation 6.1 without the absolute operator,

| |). Where error is uniformly one-sided (positive or negative), MAE is equal to sta-

tistical bias. Many of the adjusted methods described below have zero statistical bias;

that is, the expected score after adjustment, taken over many different systems, is the

true score on full pooling. Nevertheless, for a specific system, the adjusted methods

may make errors one way or the other (that is, though statistically unbiased, they have

non-zero variance); using MAE as our measure of accuracy accounts for this. When
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Figure 6.2: Empirical tRBP@10 (p = 0.8) bias for unpooled systems, using different

pooled widths, on the TREC 2004 Robust Track data set. Pooling is to depth 10.
Graphed is the mean, and quartiles, of the difference in mean system tRBP score,

between the true score for the unpooled system, and the score using either condensed

lists or assumed irrelevance. Each data point represents 100 system set samplings.

in this chapter we speak of pooling bias, we are referring to the error in mean score

suffered by a particular system (an element in the sum in Equation 6.1), not the mean

error (that is, the statistical bias) observed across all systems.

The size of a pool is determined by two factors: the number of systems included

in the pool, which we will refer to as the pool’s width; and the depth to which those

systems are pooled. Throughout this chapter, pool depth will be 10, corresponding to

the evaluation depth of the metric. Having evaluation and pooling depth being the same

means that pooled systems are fully assessed: evaluating beyond pooling depth would

create a second-order pooling bias even for pooled systems, as systems may benefit

beyond the pool depth by similarity to other pooled systems.

6.1.2 Bias of exclusion from the pool

In this section, we experimentally observe the empirical bias that affects a system’s

score when that system is excluded from the pool. A set of n ∈ {2, 4, 10, 20, 40}
systems is randomly sampled from the TREC 2004 Robust data set as the pool, and an

additional system is sampled as the evaluated system. The evaluated system’s score is

calculated under full assessment, as if it were pooled; then it is removed from the pool,

and its score is calculated again. Two unpooled scores are calculated for the evaluated

system, one with unassessed documents assumed irrelevant, and the other with such

documents excluded (that is, using condensed lists). The unpooled minus the pooled

score is the empirical bias, under the chosen scoring scheme, suffered by the system

on exclusion from the pool. This process is repeated for a large number of randomly

sampled pooled and unpooled systems, and the mean and quartiles of the biases for

each unpooled assessment method are calculated for each pool width.
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The pooling bias suffered (or enjoyed) by unpooled systems in our data set, as cal-

culated using the above experimental method, is shown in Figure 6.2. As anticipated,

the use of condensed lists is biased in favour of the unpooled system, while assuming

unassessed documents to be irrelevant is biased against it. For assumed irrelevance,

the bias steadily decreases as the pool width increases, roughly halving when the pool

width is doubled. There are two causes for this: as the number of unassessed docu-

ments falls, the weight of the unassessed documents in the final score also drops; and

as the pool width increases, the probability that an unassessed document is in fact ir-

relevant (as assumed) also increases. The change in bias for condensed lists is less

straightforward, however. Again, wider pools mean fewer unassessed documents, and

a higher likelihood that the remaining unassessed documents are irrelevant; but since a

greater likelihood of irrelevance means a greater bias per unassessed document under

condensed lists, these two effects counteract each other. Thus, condensed lists are less

biased than assumed irrelevance for narrow pools, whereas assumed irrelevance is less

biased for wide pools. It can also be observed that, with wider pools, the distribution

of bias becomes more skewed (mean closer to third quartile). The reason for this skew

is that the data set contains families of similar runs; as pool width increases, so does

the probability that the unpooled system will have its documents in fact pooled by an-

other, almost identical system from the same family. A greater proportion of systems

therefore demonstrate almost no pooling bias; but the mean bias is still pulled higher

by the remaining, non-familial unpooled systems.

How serious is the bias observed in Figure 6.2? Consider the typical evaluation sit-

uation of comparing a new experimental system to an existing baseline; assume (as is

likely) that the baseline is pooled, but the new system is not. From the TREC 2004 Ro-

bust systems, we shall take the second quartile systems, by mean RBP, as representative

baselines; and, for each such baseline, any higher-scoring system as a representative

experimental improvement (the same setup as used in Section 5.2). Then the median

difference between the mean RBP (p = 0.8) score of a baseline and an experimental

system is 0.030. With narrow pools (of, say, ten pooled systems or fewer), the median

delta is small enough to be almost entirely swamped by the bias shown in Figure 6.2.

And even with wider pools, while the median delta is greater than the bias, the bias will

often be sufficient to prevent a true delta from achieving statistical significance.

It can be observed from Figure 6.2 that the degree of bias under each scheme

changes with pool width, and varies considerably even within the one pool width de-

pending on the particular set of systems sampled. It would also vary for different pool

depths, for different metrics, for different collections, and for different system popu-

lations. Thus, it is not possible to come up with a single general adjustment factor, or

even parameterized set of factors, that can be satisfactorily applied to correct pooling

bias. Bias must be empirically estimated on each experimental data set.

6.2 Bias inference from systems

In Section 6.1.2 we observed pooling bias through a leave-one-out experiment. We

now propose two methods of estimating and correcting pooling bias, in an evaluation

where one or more unpooled systems are compared against a set of pooled ones. The

first method uses a simulated leave-one-out experiment on the systems under evalua-

tion. The leave-one-out experiment cannot be performed on the unpooled system itself,

because the relevance assessments to calculate its pooled score do not exist (if they did,

there would be no need for score adjustment). But the experiment can be performed on
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Figure 6.3: Experimental unpooling. System s is withdrawn from the pool, and its

uniquely returned documents are marked as unassessed. System r, previously un-

pooled, is added to the pool, to maintain a pool width of 2. The unpooled score of

System s is then calculated. We do not have assessments for documents uniquely re-

turned by System r, but since this does not affect the score of System s (unless we

are using a recall-normalized metric), these assessments are not required. The effect

of adding System r to the pool is to retain the assessments for documents returned by

Systems r and s, but not by System z (or any other systems).

the pooled systems in the evaluation set, and the pooling bias observed on these pooled

systems used to estimate and correct the bias suffered by the actually unpooled system.

We call this method of score adjustment bias inference from systems.

Bias inference from systems is described in Algorithm 6.1. Each of the fully-pooled

systems s ∈ S is held out of the pool in turn, which is to say that the documents

uniquely returned by s up to pooling depth are marked as unassessed. A key refinement

is that the unpooled system, r, is added to the pool when s is removed. This has the

effect of retaining the relevance assessments of documents returned by only r and s.
This refinement is necessary to ensure that the pooling bias of a pool of width n = |S|
is being calculated, not that of a pool of width n − 1. Because these documents were

pooled by s, they have relevance assessments. Documents uniquely returned by r
alone are unassessed, but since they cannot affect the score of s (or indeed of any

of the pooled systems), that does not matter. (Note that if a normalized metric were

being used, the relevance status of documents uniquely returned by r would become

germane.) Simulated unpooling is illustrated in Figure 6.3. The simulated pool having

been constructed, the observed bias βs between the mean pooled and unpooled score of

s is noted. Repeating this experiment for each of the n pooled systems gives n different

observed pooling biases βs, and the mean of these βs values give an estimate of the

mean pooling bias, which is used as the unpooled adjustment factor a. The adjustment

factor a is added to the score of the unpooled system, r, to derive its adjusted score. A

sample working is given in Figure 6.4.

We assess the effectiveness of system-based bias adjustment on systems randomly

sampled from the TREC 2004 Robust Track data set, for the base unpooled scoring
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Algorithm 6.1 Adjust scores based on inference from systems

T ← set of topics

S ← set of (pooled) systems

Q← set of qrels on T derived from pool of S
r ← (unpooled) system

for s ∈ S do

Q′ ← Q\{documents uniquely pooled from s}
Q′ ← Q′ ∪ {documents returned by r}
ts ← mean (pooled) score of s evaluated against Q
us ← mean (unpooled) score of s evaluated against Q′

βs ← ts − us ⊲ unpooled for against s
end for

a←∑

s∈S βs/|S| ⊲ adjustment factor

ur ← mean (unpooled) score of r evaluated against Q
return ur + a

Robust AdHoc

Pool Width TREC 2004 TREC 8 Manual

Raw Adjusted Raw Adjusted

2 0.127 0.041 0.451 0.302

4 0.078 0.028 0.384 0.294

10 0.029 0.015 0.283 0.237

20 0.013 0.008 0.231 0.203

40 0.007 0.006 0.177 0.159

Table 6.1: Bias inference from systems. Mean absolute error (MAE) of leave-one-

out score adjustment and unadjusted scores for tRBP@10 (p = 0.8) under presumed

irrelevance, for different numbers of pooled systems. The left columns are for all

systems from the TREC 2004 Robust Track. The right columns show estimation of

unpooled manual system scores from pooled automatic systems on the TREC-8 AdHoc

Track data set. Bias (mean non-absolute error) is 0 for column 3 (adjusted scores on all

TREC 2004 Robust systems), and negative MAE for columns 2, 4, and 5 (unadjusted

scores, and adjusted scores on TREC 8 Manual systems).

method of assuming unassessed documents to be irrelevant. The error of adjusted and

raw scores is compared. A total of n ∈ {2, 4, 10, 20, 40} systems are selected to form

the pooled set, and one further system is selected as the unpooled, test system. A

qrel set is formed from the documents returned by the pooled systems up to depth

10. The true pooled score of the unpooled system is calculated, and compared against

the raw and the adjusted unpooled score. This is repeated 100 times for each pool

width. The results, as measured by MAE, are shown in the second and third columns

of Table 6.1. The adjusted scores have a much smaller mean absolute error from the

true pooled scores than do the unadjusted scores, an effect that is strongest with small

pool widths. Moreover, because of the random sampling, the adjusted scores are an

unbiased estimate of the true pooled score (as likely to over- as to under-estimate),

so that the mean (non-absolute) error is 0; in contrast, the unadjusted scores are all

underestimates, making the mean error identical to the (negative) mean absolute error.
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Topics
Pooled Systems New System

s1 s2 s3 r

t1 0.26 0.23 0.31 0.28 0.25 0.17 0.28

t2 0.11 0.09 0.25 0.19 0.35 0.22 0.18

t3 0.08 0.07 0.09 0.08 0.14 0.11 0.15

t4 0.12 0.08 0.12 0.10 0.48 0.42 0.21

t5 0.12 0.07 0.35 0.31 0.42 0.38 0.31

t6 0.15 0.12 0.27 0.24 0.41 0.35 0.37

ts 0.14 0.23 0.34

us 0.11 0.20 0.28 0.25

βs 0.03 0.03 0.06

a + 0.04

t̂r 0.29

Figure 6.4: Illustrative calculation of bias inference from systems. Pooled scores are

shown in black; unpooled in red italics. Systems s1, s2, and s3, are pooled on the topic
set {t1, . . . , t6}, while System r is unpooled. Each of the pooled systems is withdrawn

from the pool, with r added, and its unpooled score is derived. The difference (βs)

between the mean pooled score (ts) and unpooled score (us) of each pooled system

is calculated. The mean of these differences becomes the adjustment factor a. The

adjustment factor is added to the unpooled score for System r to derive our estimate t̂r
for that system’s pooled score.

The high accuracy observed for the adjusted scores on the TREC 2004 Robust

Track data sets is, however, misleading. In estimating the pooling bias of the unpooled

system based on that observed on the pooled systems, the assumption is being made

that the unpooled system is similar to the pooled ones. The random sampling method

employed in the assessment reported in Table 6.1 artificially satisfies this assumption:

because pooled and unpooled systems are randomly sampled from the same population,

they are by (statistical) definition similar. In real evaluations, however, we cannot

automatically assume that the new, unpooled system is similar to the existing, pooled

systems. After all, the research and development effort that has gone into the new

system is aimed at making it different from, and better than, the existing ones. And if

the new system is better than the existing ones, then its uniquely returned documents

are more likely to be relevant than those of the existing systems.

The more demanding and realistic test, therefore, is how accurate the adjustment

method is when the unpooled system is not (randomly) similar to the pooled systems,

but instead embodies some systematic differences. We simulate this using the TREC 8

AdHoc dataset, attempting to adjust the score of each of the 11 high-scoring manual

runs based on pools of automatic systems. The results are shown in columns four and

five of Table 6.1. The pooling bias on raw scores is enormous for narrow pools, almost

half of the maximum achievable score for a pool width of 2, and is still substantial even
for a relatively broad (but shallow) pool of 40 systems. The adjusted score does reduce

the bias somewhat, but proportionally much less so than for the randomly-cosampled

TREC 2004 systems. The relative effectiveness of the adjustment diminishes, too, with

pool width: at pool width 40, the leave-one-out simulation on the pooled automatic
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systems is finding few unassessed documents and slight biases, and so producing an

adjustment factor entirely inadequate for the large bias still suffered by manual runs.

The high-scoring manual runs of the TREC 8 AdHoc data set form a particularly

demanding challenge for score adjustment. Nevertheless, the experiments reported in

the rightmost columns of Table 6.1 underline the weakness of bias estimation from

systems. The method assumes that the unpooled system is similar to the pooled ones,

and derives the estimation of bias and the adjustment factor based on this assumption.

In practice, though, the assumption of (randomly) similar systems is unlikely to be

justified by the circumstances of the evaluation. And if the new, unpooled system is

systematically different from the existing, pooled ones, then score adjustment based on

bias estimation from systems will suffer lower accuracy.

6.3 Bias inference from topics

Bias estimation from systems, described in Section 6.2, relies on the (often unrealistic)

assumption that the new, unpooled system has been sampled from the same population

as the pooled systems. If this assumption is invalid, then the adjustment is unreliable.

The second method of score adjustment we propose performs inference along a differ-

ent dimension. Rather than inferring pooling bias from one set of systems to another

system, the second method, bias inference from topics, infers bias from one set of top-

ics to another set of topics. The method does require full assessment of the new system

on a topic subset, which is not achievable in all experimental circumstances. But the

method rests on a sounder inferential basis, since the assumption that topics have been

randomly sampled from the same population is more plausible (and, in many circum-

stances, directly enforceable) than the assumption that systems have been.

The evaluation scenario to which bias inference from topics is addressed is as fol-

lows. There is a set of existing systems, S, which have been fully assessed on a set of

existing topics T . A new system, r, is to be evaluated. This system was not pooled for

the relevance assessments on T , and so is not fully assessed for them. We wish to esti-

mate the pooling bias that r suffers on the topics T . To do this requires the existence or
creation of a set of common topics C which the new system r and the existing systems

S are all pooled and fully assessed on. The common topics C could be created by fully

assessing a new set of topics, or performing supplementary assessments on a subset of

the existing topics T for documents uniquely returned by r (if such supplementary as-

sessments are judged to be methodologically sound). It may also happen, in a dynamic

evaluation and development environment, with new systems and new topics being reg-

ularly added, that the set of common topics C will already have been produced as part

of the ongoing evaluation process.

Given the existence of a set of common topics C that all systems, new and existing,

are fully assessed upon, it becomes possible to directly perform a leave-one-out exper-

iment over C for the new system, r. This leave-one-out experiment calculates the true

pooling bias against r on the topics C, and this bias can be used as an adjustment factor

for the unpooled scores r achieves on existing topics T . Moreover, if it is the case (or

can reasonably be assumed) that T and C have been randomly sampled from the same

population of topics, then the adjusted mean score will be an unbiased estimate of the

true pooled mean score for r. This adjustment method is described in Algorithm 6.2,

and a sample working is given in Figure 6.5.

We begin by analyzing bias estimation from topics as a sample-based ratio (or

rather, delta) estimator. Then an experimental assessment is performed, validating the
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Algorithm 6.2 Adjust scores based on inference from topics

T ← set of topics

S ← set of (pooled) systems

QT ← qrels on T derived from pool of S
r ← (unpooled) system

C ← set of common topics

QC ← pool S ∪ r on C and assess for relevance

for c ∈ C do

Q′
C ← QC\{documents uniquely pooled from r}

tr,c ← (pooled) score of r on c evaluated against QC

ur,c ← (unpooled) score of r on c evaluated against Q′
C

βr,c ← tr,c − ur,c ⊲ unpooled bias against r on c
end for

a←∑

c∈C βr,c/|C| ⊲ adjustment factor

ur ← mean (unpooled) score of r evaluated against QT

return ur + a

formal analysis and demonstrating that topic-based adjustment is more accurate than

system-based adjustment, and is robust to the case that the system whose score is ad-

justed is quite different in nature from the existing ones.

6.3.1 Analysis

The proposed method of topic-based adjustment is a form of ratio estimator (Thompson,

2002, Chapter 7) (though, as will be explained, we are working with deltas rather

than ratios; see also Lessler and Kalsbeek (1992, Chapter 10) for a description of bias-

correction through resampling). Ratio estimators are of use in a situation where high-

bias observations exist for a large sample, while low-bias or unbiased observations

exist for a small subset of that sample. For the subset that both low- and high-bias

observations exist on, the mean ratio (or difference) between the high- and low-bias

observations is calculated. This ratio is then applied to adjust the high-bias observa-

tions, reducing the bias of the final estimator. Note that what matters is the relative

bias of the estimators, not their relative variability; a low-variability estimator cannot

be used to adjust a high-variability estimator if both are unbiased.

The application of ratio estimation as described above to the estimation of pool

bias using common topics is fairly straightforward. The value we wish to estimate is

the true pooled mean score of System r. The full sample is the superset of topics, T∪C.

The high-bias observations are the unpooled scores of r on T ∪ C, and the low-bias

observations are the pooled scores of r onC. These latter observations are in fact exact,

free of both bias and variance. Importantly, the unpooled scores have a definite bias

(tendency to error either above or below the true score). Under assumed irrelevance,

this inaccuracy is one-sided, never overestimating scores. Condensed list inaccuracy

is not one-sided, but nevertheless is strongly biased high. Therefore, in both cases,

ratio estimation can reduce error. Rather than estimating the ratio between pooled and

unpooled scores, however, we estimate the difference; this is because unpooled scores

can be 0, leading to an undefined ratio.

More formally, let r be the system whose score we wish to adjust on the topics T ,
for which r is unpooled. Let the desired value, namely the mean of the true pooled
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Topics
Pooled Systems New System

s1 s2 s3 r βr,c a

C
t1 0.26 0.31 0.25 0.28 0.36 0.08

}

0.09
t2 0.11 0.25 0.35 0.18 0.28 0.10

t3 0.08 0.09 0.14 0.15

t4 0.12 0.12 0.48 0.21

t5 0.12 0.35 0.42 0.31

t6 0.15 0.27 0.41 0.37

ts 0.14 0.23 0.34

ur ⇒ + 0.25

t̂r 0.34

Figure 6.5: Illustrative calculation of bias inference from topics. Systems s1, s2,
and s3 are pooled on topics {t1, . . . , t6}, whereas System r is initially unpooled on

all topics. Topics t1 and t2 are chosen as the common topics C, and System r is

pooled for these topics by assessing any documents uniquely returned by the system.

(Alternatively, an entirely new set of topics could be chosen as the common topics.)

The difference βr,c between the pooled and unpooled scores of System r on every

common topic c is calculated. The mean of these differences becomes the adjustment

factor a, which is added to System r’s unpooled score ur to derive an estimate t̂r for its
pooled score. Note that inference from topics gives a much higher estimate of pooling

bias in this instance than estimation from systems (Figure 6.4). Systems s1 through

s3 are more similar to each other than they are to r, and hence cover each others’

documents more thoroughly. Therefore, inference from systems understates the bias

that System r suffers from not being in the pool.

scores for r, be µt. Let the total number of topics |C ∪T | beN , and let n = |C| be the
number of common topics. Denote the unpooled score achieved by System r on topic

i as ui, and the true pooled score (known only on the common topics) as ti. Then the

adjustment factor a is derived from the n common topics as:

a =
1

n

n
∑

i=1

(ti − ui) . (6.2)

The estimation of the true mean score µt, using the adjusted estimator µ̂a, for all N
topics is:

µ̂a =
1

N

N
∑

i=1

(ui + a) . (6.3)

For n of the N topics, we know the true score ti, not just the unpooled score ui;

however, the mean true score of these n topics is by derivation
∑n

i (ui + a), and so

does not need to be separately accounted for in Equation 6.3.

The adjustment factor a is itself an estimate of the true adjustment factor A which

should be applied to the mean unpooled scores µu to achieve the true mean score µt.

The value of the true adjustment is:

A =
1

N

N
∑

i=1

(ti − ui) . (6.4)
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Since a is calculated from n topics randomly sampled from the same population as

the N full topics (see Equation 6.2), it follows that a is an unbiased estimator of A.
Therefore, µ̂a = µu + a is an unbiased estimator of µt. The approximate variance of

this estimator is (Thompson, 2002, Chapter 7, Equation 4):

var(µ̂a) ≈
N − n

N
· σ

2
a

n
. (6.5)

The left-hand fraction of Equation 6.5 is a small-population adjustment, accounting for

the fact that n of theN values are precisely known in each sample (if allN values were

known, there would be no variance to the estimator). The numerator of the right-hand

fraction is:

σ2
a =

1

N − 1

N
∑

i=1

(ti − (ui +A))2 (6.6)

namely, the mean squared error of the per-topic adjusted scores, compared to the true

scores, across all N topics, assuming the true adjustment factor A were used (A is

correct for the mean score, but not for every topic score). To be clear, the value of

Equation 6.5 cannot be calculated in actual evaluations (though it can be estimated),

because not all N true scores are known; the equation is given here as an analytical

tool for the experimental data sets.

For the n common topics C, we have the true pooled scores, without the need

for an adjustment. An alternative estimator for the overall true mean score µt would

therefore be simply to take the mean true pooled scores t observed across these n
topics. Denote this sampled estimator as µ̂n. Since C and T are randomly co-sampled,

µ̂n is an unbiased estimator of µt. The variance of the estimator is (Thompson, 2002,

Chapter 2, Equation 5):

var(µ̂n) =
N − n

N
· σ

2
t

n
, (6.7)

where σ2
t is the variance of the true scores across all N topics. Comparing Equa-

tions 6.5 and 6.7, we can see that the sampled estimator µ̂n is more accurate (has lower

variance) than the adjusted estimator µ̂a when σ2
t , the variance of the true scores, is

less than σ2
a, the mean squared error of the adjusted scores. That is, if systems tend to

get similar scores for different queries, then a small number n of fully-pooled queries

are sufficient in themselves to give a reliable estimate of the true mean score of r. But
it has been seen in Chapter 4 that (unstandardized) scores are highly variable between

topics. Therefore, provided the adjustment values given by bias estimation from top-

ics are reasonably accurate, then it can be anticipated that adjustment on the unpooled

topics will give more reliable results than using the fully-pooled topics alone. This is

confirmed empirically in Section 6.3.2.

Another estimator for the true mean pooled score is, simply, the unadjusted score.

We know from Figure 6.2 that this unadjusted estimator µ̂u is biased, unlike the pre-

ceding estimators; nevertheless, it is possible for a biased but low-variance estimator to

give lower mean errors than a high-variance unbiased one. The mean error on the un-

adjusted scores is A, of which a is an estimator. The error on the mean adjusted score

is A − a; that is, it is dependent on how accurate a is as an estimate of A. Therefore,
the adjusted mean score will be more accurate than the unadjusted mean score if and

only if 0 < (a/A) < 2; that is, if the following two conditions are met:

1. the estimated adjustment a is the same sign as the true adjustment A (adjustment

is not making the error worse); and
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Algorithm 6.3 Sample systems, topics to assess adjustment accuracy

T ← 249 TREC Robust 2004 topics

X ← 110 TREC Robust 2004 systems

I ← 100 ⊲ number of system sampling repeats

J ← 200 ⊲ number of topic sampling repeats

for w ∈ {2, 4, 10, 20, 40} do ⊲ pool widths
for i ∈ 1→ I do

S ← sample(X,w)
r ← sample(X\S, 1)
Q← pool S ∪ r on T
Q′ ← pool S on T
tr ← mean (true) score of r evaluated against Q
ur ← mean (unpooled) score of r evaluated against Q′

for n ∈ {10, 20, 40, 100} do
for j ∈ 1→ J do

C ← sample(T, n) ⊲ common topics

a← estimate adjust. on C as in Algorithm 6.2

er ← tr − (ur + a) ⊲ adjustment error

Ew,n ← Ew,n + |er|
end for

end for

end for

end for

E ← E/(I ∗ J) ⊲ Take mean error over I ∗ J repeats

return E

2. the estimated adjustment a is no more than twice the true adjustment A (adjust-

ment is not overshooting).

Where unadjusted scores always misestimate the true scores in the same direc-

tion, as occurs when unassessed documents are assumed irrelevant, Condition 1 is al-

ways met. And since the expected value of a is A, Condition 2 will rarely fail to be

met. Thus, adjusted scores will almost always be more accurate than unadjusted scores

where the base scoring method is to assume unassessed documents are irrelevant. For

condensed lists, however, the unadjusted scores, which are usually overestimates, may

be underestimates, such that Condition 1 is not guaranteed; the calculated adjustment

could end up having the wrong sign from the actual error. Additionally, with the center

of the distribution of errors under condensed lists being closer to 0, there is a greater
likelihood of Condition 2 being violated. Therefore, the effectiveness of score adjust-

ment for condensed lists requires empirical assessment.

6.3.2 Experiments

In this section, we empirically assess the improvement in accuracy that score adjust-

ment, based on bias inference from topics, provides over using the unadjusted, un-

pooled scores. We also compare the accuracy of the adjusted scores with that of

the mean score estimate provided by the fully-pooled scores on the common topics

alone. The method is again to random sample m ∈ {2, 4, 10, 20, 40} systems from

the TREC 2004 Robust dataset as pooled systems, and one system as the unpooled
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Pool

Width
Estimator

Common Topics

0 10 20 40 100

True 0.078 0.054 0.036 0.019

2 Unadjusted 0.127 0.122 0.117 0.107 0.076

Adjusted 0.041 0.028 0.019 0.010

4 Unadjusted 0.078 0.074 0.071 0.065 0.046

Adjusted 0.031 0.021 0.014 0.008

10 Unadjusted 0.029 0.028 0.027 0.024 0.017

Adjusted 0.016 0.012 0.008 0.004

20 Unadjusted 0.013 0.013 0.012 0.011 0.008

Adjusted 0.010 0.007 0.005 0.003

40 Unadjusted 0.007 0.007 0.007 0.006 0.004

Adjusted 0.006 0.005 0.003 0.002

Table 6.2: Mean absolute errors for different estimators of true mean pooled score,

over randomly-sampled systems from the TREC 2004 Robust Track, for different pool

widths and numbers of common (fully-assessed) scores. The metric is tRBP@10, p =
0.8. The base method is to assume that unassessed documents are irrelevant. The

“true” method estimates the true mean score across all 249 topics from the mean scores

of the fully-assessed common topics alone. The “unadjusted” method takes the mean

of the unadjusted scores for the unpooled topics, and of the fully-assessed scores for

the common topics. The “adjusted” method performs score adjustment based on bias

estimation on the common topics, then takes the mean of the adjusted score on the

unpooled topics, and of the fully-assessed scores for the common topics.

system, whose true (pooled) score we wish to estimate. Three estimation methods are

compared: using the unadjusted score, with unassessed documents assumed irrelevant;

fully assessing n ∈ {10, 20, 40, 100} topics for the unpooled system, and estimating its

overall mean score based solely on these n topics; and choosing n ∈ {10, 20, 40, 100}
topics for full assessment as common topics, and performing score adjustment on the

unpooled system using bias inference based on these common topics. The experimen-

tal method is given in more detail for the adjusted scores in Algorithm 6.3. For both the

unadjusted and the adjusted estimation methods, the scores of the fully-assessed topics

are included in calculating the overall mean.

The resulting mean absolute error scores are given in Table 6.2. The mean of the

fully assessed scores alone (the sampled estimator, µ̂n) is superior to the combination

of fully-assessed and unadjusted scores for narrow pools (width of 2 or 4 systems). But

in all cases, the adjusted score method outperforms the alternatives. It most widely

outperforms unadjusted scores for narrow pools but many common topics, and the

sampled estimator for wide pools but few common topics. In any case, as few as 10
common topics are sufficient to reduce unadjusted score error to as little as a third of

the original. Taking the mean absolute error, and averaging over so many systems,

obscures the precise calculations, but the order of variation with number of common

topics, laid out in Equation 6.5 for the adjusted estimator µ̂a, and Equation 6.7 for
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Pool

Width
Estimator

Common Topics

0 10 20 40 100

True 0.078 0.054 0.036 0.019

2 Unadjusted 0.034 0.033 0.032 0.029 0.021

Adjusted 0.041 0.028 0.019 0.010

4 Unadjusted 0.035 0.034 0.032 0.030 0.021

Adjusted 0.031 0.022 0.015 0.008

10 Unadjusted 0.024 0.023 0.022 0.020 0.014

Adjusted 0.018 0.013 0.009 0.005

20 Unadjusted 0.020 0.019 0.018 0.016 0.012

Adjusted 0.013 0.009 0.007 0.003

40 Unadjusted 0.012 0.012 0.011 0.010 0.007

Adjusted 0.009 0.007 0.005 0.003

Table 6.3: Mean absolute score errors for different estimators of true mean pooled

scores, with the base method of handling unassessed documents being to remove them

and create condensed lists. Other details are as for Table 6.2.

the true-scores-only estimator µ̂n, is roughly borne out by Table 6.2. In particular, the

errors on µ̂a and µ̂n decline, with the increase in the number of common topics, at

roughly the same rate. Compared to bias estimation from systems, shown in Table 6.1,

estimation from topics leads to similar or marginally higher error with 10 common

topics, with the error decreasing as the number of common topics increases. But this

is on randomly-sampled system sets that are artificially favourable to the assumptions

of the from-system inference method. As will be observed later, inference from topics

performs far better than from systems when the latter’s assumptions are violated.

Table 6.3 reports the same experiment as Table 6.2, but using condensed lists as

the base scoring method for unassessed documents. The analysis in Section 6.3.1 in-

dicated that score adjustment from common topics would almost always outperform

unadjusted scores where unassessed documents are assumed irrelevant, since that un-

adjusted method has one-sided bias; this prediction is validated by Table 6.2. The

same analysis suggested that score adjustment would not be so unequivocally superior

for condensed lists, though, because the bias there, while predominantly positive, is not

universally so. The latter prediction is borne out by the results in Table 6.3. For very

narrow pools, of only 2 or 4 systems, the fact that a document is unpooled is only weak

evidence against its relevance, so excluding it from the condensed lists is only mildly

biased in favour of the unpooled system; in these circumstances, if the number of com-

mon topics is also small (say only 10, or perhaps 20), then score adjustment is not able

to improve much on the unadjusted score, and can make things worse. Nevertheless,

as either the pool width or the number of common topics increases, score adjustment

achieves distinctly superior accuracy to unadjusted scores on condensed lists.

So far, we have tested the case where the unpooled system is randomly sampled

from the same population as the pooled one. We saw previously in Section 6.2 that

this is a situation in which bias estimation from systems, via a simulated leave-one-out
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Pool

Width
Estimator

Common Topics

0 10 15 20

True 0.067 0.052 0.041

2 Unadjusted 0.451 0.361 0.316 0.271

Adjusted 0.060 0.046 0.037

4 Unadjusted 0.384 0.308 0.269 0.231

Adjusted 0.059 0.045 0.037

10 Unadjusted 0.283 0.226 0.198 0.170

Adjusted 0.054 0.041 0.033

20 Unadjusted 0.231 0.185 0.162 0.139

Adjusted 0.050 0.038 0.031

40 Unadjusted 0.177 0.141 0.124 0.106

Adjusted 0.045 0.035 0.028

Table 6.4: Mean absolute score errors for different estimators of true mean pooled

scores, estimating the scores of the 11 best TREC 8 AdHoc track manual runs, with

pools drawn from the automatic runs. The base method of handling unassessed docu-

ments is to assume them irrelevant. Other details are as for Table 6.2.

experiment, also performs well. Yet to be tested is the claim that bias estimation from

common topics is also robust when the unpooled system is systematically different or

distinct from the pooled ones. For inference from systems, this requirement was tested

(and found wanting) by attempting to adjust the scores of a system drawn from the best

11 manual runs in the TREC 8 AdHoc dataset. We now repeat that experiment using

common topic inference. The results are shown in Table 6.4. Because the topic set is

much smaller than for the Robust collection (50 topics, compared to 249), the range of
common topic set sizes is more constrained. As before, the error on unadjusted scores

is very wide. But whereas inference from systems only managed to reduce this error by

at most a third (see Table 6.1), inference from common topics slashes it to as little as a

sixth on 10 common topics, and even less for larger common topic set sizes. Error is

still about 50% higher than for the randomly-sampled Robust set, whereas the error of

the true topic estimator is slightly lower; nevertheless, the adjusted estimator has 10%

lower error than relying on the true topics alone for a 2-system pool, and this error

decreases as pool width increases. Even in the extreme case of attempting to estimate

the true score of a top-performing manual system based on a pool drawn from two

automatic runs, score adjustment based on common topics is able to achieve higher

accuracy than relying on the common topics alone.

Finally, Table 6.5 shows the results for condensed lists on the TREC 8 dataset,

again estimating high-scoring manual runs from automatic pools. On this dataset, the

condensed list method with unadjusted scores shows much lower error for unpooled

systems than does assuming documents irrelevant, especially for wider pools. The rea-

son is that the negative evidence of an unassessed document’s being irrelevant, from

it not being returned in the pool, is balanced by the positive evidence of it being re-

turned by a top-ranking manual run; with wider pools, these two largely balance out,
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Pool

Width
Estimator

Common Topics

0 10 15 20

True 0.067 0.052 0.041

2 Unadjusted 0.154 0.123 0.108 0.093

Adjusted 0.054 0.041 0.033

4 Unadjusted 0.091 0.073 0.064 0.055

Adjusted 0.046 0.035 0.028

10 Unadjusted 0.033 0.027 0.023 0.020

Adjusted 0.036 0.027 0.022

20 Unadjusted 0.018 0.014 0.013 0.011

Adjusted 0.030 0.023 0.019

40 Unadjusted 0.013 0.010 0.009 0.008

Adjusted 0.026 0.020 0.016

Table 6.5: Mean absolute score errors for different estimators of true mean pooled

scores, estimating the scores of the 11 best TREC 8 AdHoc track manual runs, with

pools drawn from the automatic runs. The base method of handling unassessed docu-

ments is to exclude them, forming condensed lists. Other details are as for Table 6.2.

and excluding unassessed documents from the ranking is a relatively neutral act. And

again, because the bias is not strictly one-sided, score adjustment does not always lead

to reduced error. For wide pools and smaller common topic sets, therefore, the adjusted

scores are on average slightly less accurate than the unadjusted ones, though in both

cases the error is slight. On narrower pools, though, and especially with larger common

topic sets, score adjustment again leads to significant error reduction.

The most notable feature of score adjustment based on common topics across the

above experiments is its consistency. It gives similar, low error rates whether the base

method is condensed lists or assuming unassessed documents to be irrelevant, and

whether the unpooled system is randomly similar to the pooled ones or is distinctive

from, and markedly superior to, them. In contrast, score adjustment from systems is not

robust to systematic differences between the unpooled and pooled systems, while the

error from unadjusted scores varies considerably depending on system composition and

base scoring method. Adjusted scores are consistently more accurate than unadjusted

where the base method is to assume unassessed documents to be irrelevant. Where

condensed lists are used, some situations make unadjusted scores are more accurate;

here, that was the case where the unpooled systems was distinct and superior to the

pool, and the pool width was wide. But this is a judgment that can only be made with

oracular knowledge of the evaluated systems: the working evaluator does not know the

true relationship between the pooled and the unpooled systems, and so cannot judge

how reliable unadjusted scores are likely to be. The error for unadjusted scores can be

quite wide; for adjusted scores, it is invariably narrow, at least on average, provided

only that the random-sampling hypothesis applies to the common and pooled topics.
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6.4 Summary

Bias in scoring retrieval systems due to incomplete relevance assessments is a signif-

icant issue, due both to increases in corpus size and a desire to reduce per-topic as-

sessment effort. The traditional method has been to assume that unassessed documents

are irrelevant, but this is increasingly biased against unpooled systems with increasing

incompleteness of the assessment set. An alternative proposal is to exclude unassessed

documents from the ranking, producing condensed lists; this method, however, is bi-

ased in favour of unpooled systems, since their unassessed documents are more likely

to be irrelevant than their assessed ones. Moreover, the degree of bias in each of the

above scoring methods varies depending on metric, pool width, pool depth, collection,

and system set. It is therefore not possible to derive a single estimate of bias, or even a

parameterized set of estimates, independent of the particular evaluation context.

In this chapter, we have proposed, analyzed, and empirically assessed two methods

of bias estimation, and hence of score adjustment to correct pooling bias. The first

method, bias estimation from systems, involves performing a leave-one-out simulation

on the fully-pooled systems, to observe the pooling bias they suffer. The mean of

these observed biases can then be employed as an adjustment factor for the score of the

unpooled system. This method requires no additional assessment. However, it relies

on the assumption that the unpooled system is randomly similar to the pooled ones.

If the unpooled system is systematically different, then this method of bias estimation

is unreliable. And, in practice, research and development will generally have been

focused on trying to ensure that the new, unpooled system is indeed different from, and

hopefully better than, the existing, pooled ones.

Rather than estimating bias based on systems, we have proposed that pooling bias

should be estimated based on a set of common topics. These topics are fully assessed on

all systems, existing and new. The degree of pooling bias is then estimated directly on

the common topics, and the resulting estimate used to adjust scores of the new system

on the existing topics, for which it is unpooled. Bias estimation from common topics

is robust to systematic differences between the new and existing systems; the only

assumption required is the (generally realistic) one that the common and existing topics

have been randomly co-sampled. The error of unpooled scores adjusted in this way is

consistently low, and generally much lower than that of unadjusted scores. Estimation

from common topics does require that such a set of topics either exist or be created;

but in a dynamic evaluation environment, it is likely that such sets will emerge as part

of the ongoing evaluation process.



Chapter 7

A Similarity Measure for

Indefinite Rankings

So far in this thesis, we have been concerned with evaluating the effectiveness of re-

trieval systems. We have assumed that relevance assessments, if only incomplete ones,

are either available or will be made; we have dealt with document rankings only once

they have been converted to relevance vectors; and we have compared rankings solely

by their effectiveness scores. There are, however, many circumstances in which we

wish to compare document rankings directly, without relevance assessments. In some

cases, the similarity between rankings can act as a proxy, where relevance assessments

have not yet been made, for a much more expensive effectiveness evaluation. If two

systems produce very similar rankings, they can hardly differ much in effectiveness;

if one system is meant to approximate another, perhaps more efficiently, then a great

difference in rankings is a cause for concern. In other cases, document rankings are

compared with no concern for effectiveness. We may be interested in which search

engines give the most similar results to each other; or in how much, and in what way,

the results of one search engine change over time.

To compare document rankings in a systematic, objective, and repeatable way re-

quires an appropriate measure of rank similarity. This may seem a well-studied prob-

lem, amenable to the use of existing rank correlation coefficients such as Kendall’s τ
or Spearman’s ρ. But there are some features of document rankings that make exist-

ing measures inapplicable. Most immediately, the standard rank correlation measures

assume that the rankings are conjoint, whereas document rankings are substantially

non-conjoint. Additionally, we care about differences at the top of document rankings

more than those further down, on the first page of search results more than on the tenth;

but most existing correlations are not top-weighted. Furthermore, the rank at which we

cut off the comparison is often arbitrary. There may be millions of search results, of

which we choose to compare only the first hundred; but there is nothing special about

the choice of cutoff depth, and we would prefer it not to become a dependency in the

measure used.

In this chapter, we assert that the features of document rankings—non-conjointness,

top-weightedness, and indefiniteness—together determine a particular class, that of in-

definite rankings. We argue that none of the existing rank similarity measures are

appropriate measures for indefinite rankings. And we propose a new similarity mea-

sure on indefinite rankings, called rank-biased overlap (RBO). Nor are the features

158
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of indefiniteness confined to document rankings. On the contrary, indefinite rankings

are widely encountered in research and in daily life, making RBO a measure of wide

application.

The chapter is laid out as follows. In Section 7.1, we describe the features of

indefinite rankings, and prescribe criteria for a suitable similarity measure on such

rankings. In Section 7.2, we discuss existing rank similarity measures, in particular

those that are able to handle non-conjoint rankings; we conclude, however, that none

of these are adequate measures for indefinite rankings. Our new similarity measure,

rank-biased overlap, is presented and analyzed in Section 7.3. And in Section 7.4, we

apply RBO to real and simulated comparisons, and compare its behaviour with that of

existing measures on non-conjoint rankings.

7.1 Indefinite rankings

Document rankings are produced by search engines on the web, and by retrieval sys-

tems in the laboratory. We discuss the latter here, but our remarks apply to the former,

too. A major branch of retrieval research is that of efficiency; how to produce the

same, or at least nearly the same, results with less processing effort. In efficiency stud-

ies, there is generally an objective ranking, produced by full evaluation, and one or

more observed rankings, produced by efficient short-cuts. One form of short-cut is

query pruning, which sets a limit on the amount of working space, in the form of docu-

ment accumulators, that is allocated to query processing. The only documents that are

fully evaluated are those which, on an initial evaluation, seem most likely to achieve

a high similarity score for the query (Lester, Moffat, Webber, and Zobel, 2005). Fig-

ure 7.1 gives part of the output of a query pruning experiment, in which the ranking

produced by a full evaluation (on the left) is being compared with those produced by

two pruned evaluations (on the right), one more strictly pruned than the other. The

researcher wishes to know how much impact the different pruning levels are having

on the fidelity of the ranking. Retrieval effectiveness may be the final arbiter, but as-

sessing effectiveness is expensive. The researcher wants initially to compare rankings

over perhaps thousands of queries, both to quantify the degree of change, and to deter-

mine which queries are most strongly affected. This is one of the scenarios in which a

similarity measure on document rankings is required.

There are several characteristics of document rankings, such as those shown in Fig-

ure 7.1, that should be observed before selecting a measure of rank similarity. One is

that the documents at the top of each ranking are more important than those further

down. Figure 7.1 only displays the top ten results from each system, and it is intuitive

that disagreements amongst these leading results are more important than those later in

the ranking. Even within these ten results, a manual inspection naturally starts by com-

paring the top results first. So too, the first page of results returned by a public search

engine is more likely to be viewed by the user than the second, and the second than

the third. Also, if more subtly, there is usually a steeper gradient in potential relevance

between the few, highly similar documents and the many, moderately similar ones, as

the similarity scores in Figure 7.1 suggest. The bias in attention and importance to-

wards the top of the rankings calls for the similarity measure used to compare them to

itself be top-weighted; that is, to exact harsher penalties for differences at the top of the

ranking than for differences further down.

A second characteristic of document rankings is that they are generally incomplete;

they do not provide a full ranking across all the elements in their domains, that is, across
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rnk docid sim

1 FBIS4-13392 6.44

2 FT931-12892 6.13

3 FT921-11935 5.66

4 FT933-7566 5.62

5 FT924-12615 5.49

6 FBIS4-59400 5.46

7 FT943-14288 5.31

8 FT941-373 5.30

9 FT923-12606 5.29

10 FBIS4-11824 5.29

. . . . . . . . .

docid sim

FBIS4-13392 6.44

FT931-12892 6.13

FT923-12606 5.29

FBIS4-11824 5.29

FBIS4-38863 5.24

FBIS4-46500 5.22

FBIS4-39925 5.19

FBIS4-46560 5.15

FBIS4-61085 5.00

FBIS3-55156 4.99

. . . . . .

docid sim

FBIS4-13392 6.44

FT931-12892 6.13

FT921-11935 5.66

FT933-7566 5.62

FT943-14288 5.31

FT923-12606 5.29

FBIS4-11824 5.29

FBIS4-38863 5.24

FT942-2178 5.23

FBIS4-46500 5.22

. . . . . .

(a) Full Evaluation (b) 1000 Accumulators (c) 400 Accumulators

Figure 7.1: Runs returned by an experimental retrieval system to a test topic, under (a)

full evaluation of index information; and (b, c) two different abbreviated evaluations.

Each row is a document that the system has returned for the particular query. The first

column gives the document identifier, by which the document is represented internally.

The second column gives the similarity score calculated between each document and

the query. The leftmost column gives the document’s rank in the result; the rank is

determined by the similarity score.

all the documents in the corpus (for web search engines, all pages on the web). Thus,

when compared, such rankings are non-conjoint; some elements turn up in one ranking

but not the other. Indeed, in the case of web search results, it is not clear that even

the domains from which the rankings are drawn are conjoint, since different engines

may have different policies on what constitutes an indexable document. For retrieval

systems under experimental control, the corpus behind each ranking is in general the

same; nevertheless, it is hardly ever the case that the document ranking produced by an

experimental system is exhaustive. Any similarity measure on such rankings must be

able to handle non-conjointness.

The incompleteness of document rankings arises because, even if conceptually the

entire corpus could be ranked, only the prefix of each ranking is returned. But the

length of this prefix is essentially arbitrary. The experimenter might set it to 100, or to
1,000, or to some other value, without essentially changing the nature of the list or of

the comparison. Moreover, the prefix length may not be entirely under the researcher’s

control. A public engine, or even an experimental system, may return shorter rankings

for some queries than for others, and some of these may fall short of the prefix length

chosen by the researcher. Thus, even within the one experiment, rankings of disparate

lengths may be under comparison. We refer to the arbitrariness and variability of the

ranking prefix length as the ranking’s indefiniteness. Any similarity measure upon such

rankings should be flexible to their indefiniteness; it should not embed the length of the

prefix in the measure itself, nor give incomparable results for different prefix lengths.

As will be seen later, an implication of comparability across cutoff depths is that the

score at a given cutoff depth must place bounds upon the score achieved at greater

depths. Otherwise, even the one ranking will not be comparable at different cutoffs.

The three qualities described above, of top-weightedness, incompleteness, and in-

definiteness, are related. It is because the top of the ranking is the most important part
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that we only need to see a prefix of it, thus rendering it incomplete; and similarly, it

is because most of the weight attaches to the top of the ranking that the depth of the

prefix can vary without fundamentally changing the nature of the metric. A ranking

that has these three qualities of top-weightedness, incompleteness, and indefiniteness,

is referred to here as an indefinite ranking, and a measure of similarity between two

such rankings as an indefinite rank similarity measure. We set out in this chapter to

show that existing rank similarity measures are not adequate indefinite rank similarity

measures, and then to propose a new measure, rank-biased overlap, that is.

7.2 Non-conjoint rank similarity measures

Section 3.3.6 introduced several rank similarity metrics, unweighted and weighted, on

conjoint rankings, such as the unweighted Kendall’s τ measure (Kendall, 1948), and

the weighted variant, τAP, proposed by Yilmaz et al. (2008a). Such measures cannot

directly be used to compare non-conjoint rankings. In this section, we survey rank

similarity measures that handle non-conjointness. First, in Section 7.2.1, we describe

the unweighted measures on non-conjoint rankings that have been proposed in the lit-

erature; then, in Section 7.2.2 we examine the (much smaller) class of weighted non-

conjoint measures.

7.2.1 Unweighted non-conjoint measures

A common approach to deriving a similarity measure on non-conjoint rankings is to

modify a conjoint similarity measure to handle list non-conjointness. One such mod-

ification is simply to ignore non-conjoint elements. This approach is unsatisfactory,

however, since the presence of non-conjoint elements provides information that ig-

noring them throws away. Consider the two rankings 〈ab???〉 and 〈a???b〉, where
? denotes a non-conjoint element. Removing these non-conjoint elements leaves both

rankings as 〈ab〉. A rank similarity measure applied to these condensed rankings would

regard them as identical; but the presence of the non-conjoint elements makes it clear

that they are not.

A more satisfactory method of handling non-conjointness starts by viewing the

lists as the truncated prefixes of otherwise conjoint rankings; what are called top-k
lists, where k is the depth of the prefix. Elements that appear in only one of the two

top-k lists are assumed to appear somewhere beneath depth k in the other list. Placing

unranked items below rank k is the approach taken by Fagin et al. (2003). They adapt

both Kendall’s τ and Spearman’s footrule in this way to handle top-k lists. For τk, the
top-k version of τ , if element i appears in ranking S but not ranking T , it is assumed

to be ranked beneath every item that does appear in ranking T . The only ambiguity

occurs if elements i and j both appear in ranking S, but neither appear in ranking T .
In this case, Fagin et al. provide for a parameterizable penalty of between 0 (assumed

concordant) and 1 (assumed discordant). They propose that the default value for this

penalty should be 0, as this fixes the score for conjoint but reversed rankings as close as
possible to half way between the scores for identical rankings, which is 1, and disjoint

rankings, which is−1. A top-k version of Spearman’s footrule, fk, is similarly defined.

The desideratum stated by Fagin et al. that conjoint but reversed top-k rankings

should score roughly half way between identical and disjoint is not a compelling one.

How close a relatedness reverse conjointness indicates depends on how large k is in

relation to the full list size n. Moreover, conjoint but reversed to depth k is more a
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peculiarity than a meaningful characteristic for top-k lists, since by definition it cannot

continue to be true if the evaluation is then extended to depth k + 1. Partly at fault is

a desire to produce a measure that is similar in form to correlation measures on con-

joint lists; similarly, having a negative score for a top-k measure is hardly meaningful.

More fundamentally, though, the special treatment of reversed top-k rankings does not

properly reflect the fact that these are indefinite rankings, and that the choice of k as

the cutoff point is essentially an arbitrary one.

In addition to Kendall’s τ and Spearman’s footrule, Fagin et al. describe a top-k
variant of Spearman’s ρ. The treatment of non-conjoint elements is similar to that

for the other methods. Fagin et al. define the notion of equivalence classes over rank

similarity measures; τk and the fk are in the same equivalence class, but ρk does not

fall into this class.

Goodman and Kruskal’s γ is a correlation coefficient related to Kendall’s τ , in
which tied items are effectively ignored (Goodman and Kruskal, 1954). Fagin et al.

also extend γ to the top-k case by regarding the pair ij both appearing in list S but

neither appearing in list T as tied, and therefore ignoring it.

Bar-Ilan (2005) and Bar-Ilan et al. (2006) adapt Spearman’s ρ and Spearman’s

footrule respectively to the top-k case by excluding non-conjoint elements (rather than

treating them as occurring beyond depth k) and calculating the coefficients on the con-
densed lists. Bar-Ilan et al. point out the loss of information that condensing lists in

this way entails.

7.2.2 Weighted non-conjoint measures

The measures τk and fk are not top-weighted, but similar assumptions about the loca-

tion of non-conjoint elements could be applied to top-weighted conjoint rank measures

to derive weighted top-k measures. Weightedness makes the assumption of unlisted

elements being ranked beyond rank k more complex in its implications, though. For

instance, in τAP, when randomly selecting an item i and a higher-ranked item j, the
question arises of whether the items beyond depth k are to be regarded as above or be-

low each other. In particular, τAP does not (as currently defined) handle tied items, so

the non-conjoint elements cannot simply be placed at rank k+1. Instead, Yilmaz et al.

(2008a) propose that any such elements be excluded; but this loses information about

implied misorderings, as described above.

Most of the measures discussed so far, both the non-conjoint ones introduced in

Section 7.2.1 and the conjoint ones described in Section 3.3.6, have been founded on

the notion of correlation. When dealing with non-conjoint lists, it is also possible,

and arguably more natural, to start instead from set intersection. A simple similarity

measure on top-k lists would be the size of the intersection, or overlap, between the

two rankings, calculated as the proportion of the ranking length; that is, |S ∩ T |/k. Of
course, such a measure, while directly handling non-conjointness, takes no notice of

ranking, and therefore is not top-weighted.

The idea of overlap can be extended by considering, not simply the overlap at depth

k, but the cumulative overlap at increasing depths. Under this principle, the approach

is to calculate the overlap for each d ∈ {1 . . . k}, and then average those overlaps to

derive the similarity measure. This measure is described by Fagin et al. (2003) and

called the intersection metric, and was simultaneously described by Wu and Crestani

(2003) and named average accuracy. We refer to it as average overlap (AO). Because

of its cumulative nature, AO is top-weighted: rank 1 is included in every subset, rank 2

in every subset but the first, and rank r in subsets r through k but not 1 through r − 1.
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d S:d T:d AS,T,d AO(S, T, d)

1 〈a〉 〈z〉 0.000 0.000
2 〈ab〉 〈zc〉 0.000 0.000
3 〈abc〉 〈zca〉 0.667 0.222
4 〈abcd〉 〈zcav〉 0.500 0.292
5 〈abcde〉 〈zcavw〉 0.400 0.313
6 〈abcdef〉 〈zcavwx〉 0.333 0.317
7 〈abcdefg〉 〈zcavwxy〉 0.286 0.312

n 〈abcdefg. . . 〉 〈zcavwxy. . . 〉 ? ?

Figure 7.2: Illustrative calculation of the average overlap (AO) of two lists to increas-

ing depths, along with their proportional overlap or agreement A at each depth. Aver-

age overlap continues to increase even as agreement decreases, and the value at depth

k does not bound the value at arbitrary depth n > k. The notation used is described in

more detail in Section 7.3.1.

Thus, AO is the first of the measures we have examined that both handles non-conjoint

lists and is top-weighted, and indeed is one of the very few such measures described in

the literature. Figure 7.2 gives a sample calculation.

Although average overlap is closer to a satisfactory indefinite rank similarity mea-

sure than any of the previous alternatives, it fails our criteria for an indefinite measure

because the depth of evaluation is implicitly embedded in the measure. The score at

prefix depth k sets no bounds on the score that would occur if the prefix were length-

ened indefinitely. The reason for this is the measure’s non-convergence. The weight of

the infinite tail always dominates that of the finite prefix, no matter how long the prefix

is. A proof is given in Appendix A.2; intuitively, we see that each overlap to depth k
has weight 1/k under AO@k, but weight 1/∞ under AO@∞. Thus, prefix evaluation

sets no bounds on the full score: after comparing k elements, the AO@∞ score could

still be anywhere in the range [0, 1], not matter how large k is.

Average overlap has another peculiarity: it is not monotonic with agreement. Find-

ing greater agreement with deeper evaluation does not necessarily lead to a higher

score, nor finding decreased agreement to a lower one. For instance, in Figure 7.2,

the elements newly revealed at depths 4 through 6 are all disjoint, yet the AO score

increases. This counter-intuitive behaviour occurs because, in calculating AO, the con-

tribution of each overlap at depth d is only considered up to k, whereas in fact it con-

tinues to contribute up to n as n goes to infinity; increasing the evaluation depth k
thus captures more of this residual contribution. To avoid this non-monotonicity, the

contribution of each overlap would have to be calculated as depth goes to infinity; but

because average overlap is non-convergent, the contribution to infinity is undefined.

Both because of its non-convergence and because of its non-monotonicity, average

overlap scores are essentially incomparable between different prefix depths.

Bar-Ilan et al. (2006) describe and employ a measure M which is the normalized

sum of the difference in the reciprocal of the ranks of each item in the two lists, with

items not ranked in one list assumed to occur at depth k + 1 in that ranking. Like AO,

this measure is top-weighted and handles non-conjointness, but is dependent on the

cutoff depth k.
Buckley (2004) proposes the AnchorMAP measure, which is based upon the re-

trieval effectiveness evaluation metric, (mean) average precision (MAP), described in
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Section 3.2.2. One of the rankings under comparison is chosen as the objective ranking,

and its first s documents are treated as relevant; Buckley suggests s = 30 as a reason-

able value. The MAP score of the other ranking is then calculated to depth k, based on
these artificial relevance judgments. AnchorMAP is asymmetric. It is top-weighted,

but weights are not fixed for ranks. The metric is non-monotonic both in s and k.
Recently, Sun et al. (2010) have proposed a new rank similarity measure, the ex-

pected weighted Hoeffding distance, dw. The dw measure is based on an edit (or

“earth mover’s”) distance between permutations, where the cost of different moves can

be weighted, allowing for arbitrary assignment of weights to different sections of the

ranking (such as the top). Like RBO (see Section 7.3.5), dw is a true metric. Non-

conjointness is handled probabilistically, by calculating the expected similarity over all

possible permutations of the domain, given the observed top k results in the ranking;

a computationally tractable form of this calculation is provided. The monotonicity of

dw in increasing depth is unclear: the expected permutations are calculated over a uni-

verse of known items (though not necessarily the union of observed prefixes), so the

appearance with increasing prefix depth of previously unknown items would seem to

destroy monotonicity. Sun et al. deploy dw for data visualization and clustering. They

suggest that a rank similarity measure should be evaluated in part on its suitability as a

clustering metric; this is an interesting suggestion and merits further attention.

Another recent proposal for a rank similarity measure is that of Kumar and Vassilvitskii

(2010). They generalize Kendall’s τ and Spearman’s footrule with both position weights

(allowing higher ranks to carry more emphasis) and element weights (incorporating,

say, relevance information about individual documents). Like the original measures

they are based on, however, the generalized measures do not handle non-conjoint rank-

ings.

A referee of Webber, Moffat, and Zobel (2010) suggested an alternative mecha-

nism, based on a rank-weighted evaluation metric such as discounted cumulative gain

(DCG) (Järvelin and Kekäläinen, 2002). In a rank-weighted metric, as described in

Section 3.2.3, each rank i is assigned a fixed weight wi, and the document at that

rank makes a contribution wi · ri to the ranking’s effectiveness score, where ri is the
document’s assessed degree of relevance. A similarity measure between two rankings

S and T can then be derived by assigning fractional relevancies to documents based

on their rank weight in S, and then using these relevancies to calculate the effective-

ness metric on T . Such a measure would be symmetric, and seems likely to pos-

sess some of the properties sought in an indefinite rank similarity measure, provided

that rank weights are chosen so as to create a convergent measure; note that DCG’s

inverse-logarithmic weights do not (Section 3.2.3). The need for properties such as

convergence, and the need to ensure sensible behaviour in limiting cases, means that

developing an approach of this kind is not straightforward, and is an area for future

investigation. How such an approach would ultimately compare with RBO as defined

below is not clear.

7.3 Rank-biased overlap

We have shown that the non-conjoint rank similarity measures described in the liter-

ature do not meet the criteria we have identified for similarity measures on indefinite

rankings, while the conjoint similarity measures discussed in Section 3.3.6 cannot be

used at all, because of the non-conjointness of indefinite rankings. We now propose a

new measure which does meet these criteria: rank-biased overlap (RBO).
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Prefix length = k
0

0

5

5

10

10

20

20

∞

∞

S abcde fgh i jk lmnopqr s tuvwxyz . . .

T abc de fAh ijk lBno pq r stuvwx yC. . .

S abcde fgh i jk lmnopqr s tuvwxyz . . .

T abc de fAh ijk lBno pq r stuvwx yC. . .

S abcde fgh i jk lmnopqr s tuvwxyz . . .

T abc de fAh ijk lBno pq r stuvwx yC. . .

S abcde fgh i jk lmnopqr s tuvwxyz . . .

T abc de fAh ijk lBno pq r stuvwx yC. . .

S abcde fgh i jk lmnopqr s tuvwxyz . . .

T abc de fAh ijk lBno pq r stuvwx yC. . .

SIM(S,T,k)
0

0

0.5

0.5

1

1

0 1

0.30 0.80

0.40 0.75

0.48 0.62

0.56

Figure 7.3: Convergence of scores with more information. Before examining either of

the rankings, their similarity score could range anywhere from 0 to 1. As the length

of the examined prefix k increases, the range of the possible full similarity score de-

creases monotonically. These ranges bound the similarity score achievable on infinite

evaluation.

Our core idea is to define a measure on the similarity of the full rankings, and

design the measure such that a partial, prefix evaluation bounds the value that a full

evaluation would produce. The deeper the prefix that is examined, the narrower the

bounds on the full score become. The idea is illustrated in Figure 7.3. With no el-

ements examined, the similarity score between the rankings could take any value in

the measure’s legal range; say, anywhere between 0 and 1. After seeing the first 5 el-

ements in each ranking, the range of possible scores of a full evaluation is narrowed

to between, say, 0.3 and 0.8. And after extending the prefixes to depth 20, the range

is narrowed to 0.48 and 0.62, as illustrated in the fourth segment of Figure 7.3. The

key is to choose a sequence of decreasing weights over the depths of the comparison,

such that the sum of the weights is convergent; that is, so that the weight of the unseen,

conceptually infinite tail of the lists is limited, and does not dominate the weight of the

seen, finite prefix. Such a weighting scheme, besides being attractive mathematically,

is justified representationally by the assumptions underlying indefinite rankings; that

is, that the interest of the consumer of the ranking is sufficiently top-weighted for a

truncated ranking to be satisfactory.

Rank-biased overlap is an overlap-based measure, superficially similar to average

overlap. The crucial difference, though, is that it biases the proportional overlap at

each depth by a convergent set of weights, in the manner described in the preceding
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paragraph. Because of the convergence of RBO’s weights, the infinite tail does not

dominate the finite head. Therefore, similarity assessment using RBO consists of us-

ing prefix evaluation to set upper and lower bounds (Section 7.3.2) on the score that

full evaluation (that is, comparison to infinite depth) could achieve (Section 7.3.1)—

precisely as illustrated in Figure 7.3. In Section 7.3.3 we derive the weight of each

rank under RBO, and therefore the weight of the prefix. The precise full RBO score

is, of course, not knowable without evaluation to infinite depth; however, in situations

where a single value is needed, a reasonable point estimate can be extrapolated (Sec-

tion 7.3.4). Because RBO is a similarity, not a distance, measure, it is not a metric;

however, 1 − RBO is a metric, as we prove in Section 7.3.5. Finally, Section 7.3.6

considers the handling of ties and of rankings of different lengths.

7.3.1 RBO on infinite lists

We begin by laying out some notation. Let S and T be two infinite rankings, and let

Si be the element at rank i in list S. Denote the set of the elements from position c to
position d in list S, that is {Si : c ≤ i ≤ d}, as Sc:d. Let S:d be equivalent to S1:d, and

Sc: be equivalent to Sc:∞. At each depth d, the intersection of lists S and T to depth

d is:

IS,T,d = S:d ∩ T:d . (7.1)

The size of this intersection is the overlap of lists S and T to depth d,

XS,T,d = |IS,T,d| , (7.2)

and the proportion of S and T that are overlapped at depth d is their agreement,

AS,T,d =
XS,T,d

d
· (7.3)

For brevity, we refer to Id, Xd, and Ad when it is unambiguous which lists are being

compared. Using this notation, average overlap can be defined as:

AO(S, T, k) =
1

k

k
∑

d=1

Ad (7.4)

where k is the evaluation depth. An example calculation has already been shown in

Figure 7.2.

Consider the family of overlap-based rank similarity measures of the form:

SIM(S, T,w) =

∞
∑

d=1

wd ·Ad (7.5)

where w is a vector of weights, and wd is the weight at position d. Then 0 ≤ SIM ≤
∑

d wd, and if w is convergent, each Ad has a fixed contribution wd/
∑

d wd (if w is

not convergent, then the denominator of this expression goes to infinity). One such

convergent series is the geometric progression, where the d th term has the value pd−1,

for 0 < p < 1, and the infinite sum is:

∞
∑

d=1

pd−1 =
1

1− p
(7.6)
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Setting wd to (1− p) · pd−1, so that
∑

d wd = 1, derives rank-biased overlap:

RBO(S, T, p) =
1− p

p

∞
∑

d=1

pd ·Ad . (7.7)

Rank-biased overlap falls in the range [0, 1], where 0 means disjoint, and 1 means

identical. The parameter p determines how steep the decline in weights is: the smaller

p, the more top-weighted the metric is. In the limit, when p = 0, only the top-ranked

item is considered, and the RBO score is either zero or one. On the other hand, as p
approaches arbitrarily close to 1, the weights become arbitrarily flat, and the evaluation

becomes arbitrarily deep.

Rank-biased overlap has an attractive interpretation as a probabilistic user model.

Consider a user comparing the two lists. Assume they always look at the first item in

each list. At each depth down the two lists, they have probability p of continuing to the
next rank, and conversely probability 1 − p of deciding to stop. Thus, the parameter

p models the user’s persistence. This concept of persistence was introduced for the

retrieval effectiveness metric rank-biased precision (Moffat and Zobel, 2008). Once

the user has run out of patience at depth d, they then calculate the agreement between

the two lists at that depth, and take this as their measure of similarity between the lists.

Let D be the random variable giving the depth that the user stops at, and P (D = d)
be the probability that the user stops at any given depth d. The expected value of this

random experiment is then:

E[AD] =

∞
∑

d=1

P (D = d) ·Ad . (7.8)

Since P (D = d) = (1−p) ·pd−1, it follows that E[AD] = RBO(S, T, p). Indeed, this
probabilistic model can be extended further by observing that Ad itself gives the prob-

ability that an element randomly selected from one prefix will appear in the other. Such

probabilistic models help to interpret the meaning of the similarity scores achieved.

7.3.2 Bounding RBO from prefix evaluation

Rank-biased overlap is defined on infinite lists. Because it is convergent, the evaluation

of a prefix sets a minimum and a maximum on the full score, with the range between

them being the residual uncertainty attendant upon prefix, rather than full, evaluation.

In this section, formulae for the minimum score, RBOMIN, and the residual, RBORES,

are derived.

Simply calculating Equation 7.7 to prefix depth k (let us call this RBO@k) sets a

lower bound on the full evaluation, but not a tight one. Indeed, if RBO@k > 0, it is
certain that RBO > RBO@k. This is because the overlap in the prefix also contributes

to all overlaps at greater depths; the same problem was observed with average overlap

in Figure 7.2. More formally, for all d > k, Id ⊇ Ik, meaning Xd ≥ Xk and Ad is at

least Xk/d. Thus, even if all items beyond the prefix turned out on full evaluation to

be disjoint, the sum of the agreements at depths beyond k would be:

1− p

p

∞
∑

d=k+1

Xk

d
· pd . (7.9)
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d S:d T:d min(Ad) max(Ad) weight

1 〈a〉 〈c〉 0/1 0/1 p0

2 〈ab〉 〈cb〉 1/2 1/2 p1

3 〈abd〉 〈cbe〉 1/3 1/3 p2

4 〈abd?[c]〉 〈cbe?[a]〉 1/4 3/4 p3

5 〈abd??[ce]〉 〈cbe??[ad]〉 1/5 5/5 p4

6 〈abd???[cef]〉 〈cbe???[adf]〉 1/6 6/6 p5

...
...

...
...

...
...

d 〈abd. . . 〉 〈cbe. . . 〉 1/d d/d pd−1

Figure 7.4: Minimum and maximum agreements between two indefinite lists at differ-

ent depths, with evaluation finishing at depth 3. Unseen items for ranks 4 through d are
marked as ?. Example hypothetical maximally agreeing elements for these ranks are

shown in square brackets.

To set a true minimum on full evaluation, Equation 7.9 is added to the RBO@k score.

The infinite sum can be resolved to finite form by the useful equality:

∞
∑

i=1

pi

i
= ln

1

1− p
, 0 < p < 1 (7.10)

which is derived by integrating both sides of Equation 7.6. After some rearrangement,

we arrive at:

RBOMIN(S, T, p, k) =
1− p

p

(

k
∑

d=1

(Xd −Xk) ·
pd

d
−Xk ln(1− p)

)

(7.11)

where k is the length of the prefix. The RBOMIN(S, T, p, k) value gives a tight lower
bound on the full RBO(S, T, p) score. It follows from this that RBOMIN(S, T, p, k) is
monotonically non-decreasing on deeper evaluation; that is,

∀j > 0, RBOMIN(S, T, p, j + 1) ≥ RBOMIN(S, T, p, j) . (7.12)

Prefix evaluation can also be used to derive a tight maximum on the full RBO score;

the residual uncertainty of the evaluation is then the distance between the minimum and

maximum scores. The maximum score occurs when every element past prefix depth k
in each list matches an element in the other list, beginning with those elements in the

prefix that were previously unmatched. Figure 7.4 illustrates this with an example. The

prefix length is k = 3, and the overlap Xk at this depth is 1. At each successive depth,

two more elements are added, one to each ranking. Therefore, the maximum overlap

increases by two until agreement is complete, which occurs at depth f = 2k − Xk.

Beyond that depth, agreement is fixed at 1. The residual RBO value is therefore:

RBORES(S, T, p, k) =
1− p

p





f
∑

d=k+1

2(d− k)

d
pd +

∞
∑

d=f+1

(

1− Xk

d

)

pd



 .

(7.13)
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Some rearranging, and again using Equation 7.10 to reduce the infinite sum, gives:

RBORES(S, T, p, k) = pf+
1− p

p

{

2

f
∑

d=k+1

(d− k)pd

d
−Xk

[

ln
1

1− p
−

f
∑

d=1

pd

d

]}

.

(7.14)

One might prefer the residual uncertainty of prefix evaluation to be dependent only

on the prefix length, not on prefix content. This is not the case with RBO, as prefix

agreement determines how long it takes before the difference between the maximum

and minimum agreements at subsequent depths d reaches the stationary value of 1 −
Xk/d, as well as this stationary value itself. It is possible, though, to set a range on the
values that RBORES can take for a given prefix length, irrespective of prefix contents.

The residual will be smallest whenXk = k, that is, when the prefix is conjoint. In this
case, Equation 7.13 becomes:

RBOmin
RES(∗, ∗, p, k) =

1− p

p

∞
∑

d=k+1

(

1− k

d

)

pd (7.15)

= pk − k · 1− p

p
·
(

ln
1

1− p
−

k
∑

d=1

pd

d

)

. (7.16)

The residual will be largest whenXk = 0, that is, when the prefix is disjoint. Then, we
have:

RBOmax
RES(∗, ∗, p, k) =

1− p

p

(

2k
∑

d=k+1

2(d− k)

d
pd +

∞
∑

d=2k+1

pd

)

(7.17)

= 2pk − p2k − 2k · 1− p

p
·

2k
∑

d=k+1

pd

d
. (7.18)

It also follows that RBOmin
RES occurs when RBOMAX = 1, and RBOmax

RES occurs when

RBOMIN = 0. These formulae are useful in experimental planning. For instance, if

two search engines are to be compared on multiple queries, then a first-page or ten-

result evaluation with p = 0.9 will give a maximum residual of 0.254, for a range

of 0.000 to 0.254, and a minimum residual of 0.144, for a range of 0.856 to 1.000.
These residuals can be decreased either by examining more results or by using a lower

value of p.
Prefix evaluation, then, can be used to set tight bounds upon the full RBO score,

meeting our main criteria for a similarity measure on indefinite rankings. The upper

and lower limits are monotonically non-increasing and non-decreasing respectively as

evaluation continues further down the two lists, in the manner illustrated in Figure 7.3.

Also, RBORES is monotonically decreasing with evaluation depth: the greater the in-

formation about the two lists, the smaller the degree of uncertainty about their full

similarity. These monotonic properties are what qualifies RBO to be a satisfactory

similarity measure on indefinite rankings, and ensure that the RBO measure provides

consistent values for whatever evaluation depth k happens to be chosen, and maintains

consistency as this evaluation depth increases. Moreover, the score at any depth of par-

tial evaluation gives strict limits on the score that would be achieved by full evaluation.

In contrast, top-k measures are measures only on the lists to depth k, and provide no

bounds on the value of full evaluation. Even with partial evaluation, RBO is a measure

on the full lists.
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7.3.3 Rank weights under RBO

The agreement at each depth d under RBO is assigned a weight. This weight, however,

is not the same as the weight that the elements at rank d themselves take, as these

elements contribute to multiple agreements. In this section, we derive a formula for the

weight of each rank under RBO. From this, the weight of a prefix can be calculated,

which in turn helps guide the choice of the p parameter in the RBO evaluation

The pair of elements at depth dmakes no contribution to partial agreements prior to

d, takes up 1/d th of Ad, 1/(d+1) th of Ad+1, and so forth. Their precise contribution

to the overall score depends on which depth, if any, they are matched at. Consider

the difference in the final score between, on the one hand, both elements at depth d
being matched at or prior to depth d (maximum agreement), and, on the other, neither

element being matched at infinite depth (minimum agreement). We will refer to this

difference as the weight of rank d, denoted asWRBO(d). Accounting for the weighting
of the agreements wd = (1−p) ·pd−1 (Equation 7.7), the weight of rank d under RBO

is therefore:

WRBO(d) =
1− p

p

∞
∑

i=d

pi

i
(7.19)

The weight of the prefix of length d, WRBO(1 : d), is then the sum of the weights of

the ranks to that depth:

WRBO(1 : d) =
d
∑

j=1

WRBO(d) =
1− p

p

d
∑

j=1

∞
∑

i=j

pi

i
(7.20)

which after some rearrangement, and using Equation 7.10 to resolve the infinite sum,

gives:

WRBO(1 : d) = 1− pd−1 +
1− p

p
· d ·

(

ln
1

1− p
−

d−1
∑

i=1

pi

i

)

. (7.21)

The weight of the tail,WRBO(d+1 :∞), is 1−WRBO(1 : d). And sinceWRBO(1 : d)
is invariant on the length of the list, it follows that the weight of the infinite tail does

not dominate that of the finite head.

Equation 7.21 helps inform the choice of the parameter p, which determines the

degree of top-weightedness of the RBO metric. For instance, p = 0.9 means that the

first 10 ranks have 86% of the weight of the evaluation; to give the top 50 ranks the

same weight involves taking p = 0.98 as the setting. Thus, the experimenter can tune

the metric to achieve a given weight for a certain length of prefix.

7.3.4 Extrapolation

Definitions of RBOMIN and RBORES were formulated in Section 7.3.2. The RBO score

can then be quoted either as base+residual or as a min–max range. For many practical

and statistical applications, though, it is desirable or necessary to have a single score or

point estimate, rather than a range of values.

The simplest method is to take the base RBO value as the single score for the

partial evaluation. The base score gives the known similarity between the two lists, the

most that can be said with certainty given the information available. The base score,
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however, is dependent on the evaluation depth, k. The highest base score that can be

achieved for depth k evaluation using persistence p is:

1− pk − k(1− p)

p

(

k
∑

d=1

pd

d
+ ln(1− p)

)

(7.22)

which, for large p and small k, is well short of 1. There are practical situations in

which a list is conceptually indefinite but where only the first few items are available.

For instance, if two search engines each only supply 7 results to a query, and the p
parameter employed is 0.9, then even if both results lists are identical (to the supplied

depth), the base RBO score will only be 0.767. In such situations, base RBO can easily

become a measure of result list length, not difference.

An alternative formulation for a single RBO score is to extrapolate from the visible

lists, assuming that the degree of agreement seen up to depth k is continued indefinitely.

Denote as RBOEXT the result of such an extrapolation. To derive a direct formula for

RBOEXT, we start from Equation 7.9, which gives the adjustment to the RBO value,

calculated on the k seen items, to make it a true minimum value. The assumption for the

lower bound is that the remaining items are all non-conjoint, so that the agreement at

ranks r > k isXk/r. Instead, extrapolation assumes that the degree of agreement seen

at k is expected to continue to higher ranks, that is, that for r > k,Ar = Xk/k. The
inferred agreement values may not in reality be precisely possible, because they would

require fractional overlap. Consider as an analogy, though, that the expectation of a

random variable does not have to be a possible value of that variable; for instance, the

expected value of rolling a fair six-sided die is 3.5. Constant agreement considerably

simplifies our formulae, resulting in:

RBOEXT(S, T, p, k) =
Xk

k
· pk +

1− p

p

k
∑

d=1

Xd

d
· pd · (7.23)

Note that this is not equivalent to simply extrapolating a score between the numeric

values of RBOMIN and RBOMAX. Since those scores are weighted to higher ranks,

such an extrapolation would also be weighted to the agreement observed in higher

ranks. Instead, RBOEXT extrapolates out from Ak, that is, the agreement observed at

evaluation depth k.
Extrapolated RBO is not monotonic; it could either increase or decrease as the pre-

fix lengthens. However, RBOEXT will always increase with increasing agreement and

decrease with decreasing agreement. That is, if Ad+1 > Ad then RBOEXT(d + 1) >
RBOEXT(d), and conversely if Ad+1 < Ad then RBOEXT(d + 1) < RBOEXT(d),
for all d > 0. It was noted in Section 7.2.2 that this property is not observed by average
overlap. And of course, RBOEXT is bounded, by RBOMIN and RBOMAX.

Where a point score is needed, there is the choice of RBOBASE or RBOEXT. In many

cases, evaluation will be performed deeply enough, and p will be small enough (say,

p ≤ 0.9 and depth of 50), that the residual disappears at normal reporting fidelity, leav-

ing RBOEXT and RBOBASE as indistinguishable and almost-exact estimates of the true

RBO score. Where the residual is noticeable, RBOEXT should in general be the pre-

ferred point estimate, in part because it is less sensitive than RBOBASE to the actual eval-

uation depth, which may vary between different ranking pairs in the one experiment.

For noticeable residuals, the full reporting format is RBOEXT[RBOMIN –RBOMAX].
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7.3.5 Metricity

Since RBO measures similarity, not distance, it is not a metric. However, RBO can

be trivially turned into a distance measure, rank-biased distance (RBD), by RBD =
1− RBO. We now prove that RBD is a metric.

Proposition 7.1 RBD is a metric.

Proof. Since RBD is clearly symmetric, it is sufficient to show that the triangle inequal-

ity holds, that is,

∀R,S, T, RBD(R, T, p) ≤ RBD(R,S, p) + RBD(S, T, p) · (7.24)

Now

RBD(S, T, p) = 1− RBO(S, T, p)

= 1− 1− p

p

∞
∑

d=1

|S:d ∩ T:d|
d

· pd

=
1− p

p

∞
∑

d=1

|S:d △ T:d|
2d

· pd (7.25)

where △ is symmetric difference, that is, the elements that are in one set or the other

but not both. The last simplification is derived from the fact that:

2d = |S:d|+ |T:d| = |S:d △ T:d|+ 2 · |S:d ∩ T:d|

⇒ 1− |S:d ∩ T:d|
d

=
|S:d △ T:d|

2d
(7.26)

So RBD(S, T ) is the weighted sum of these |S:d △ T:d|, where the weighting is

invariant on the contents of the list. Therefore, we need only demonstrate that

∀d, |R:d △ T:d| ≤ |R:d △ S:d|+ |S:d △ T:d| (7.27)

The remainder of the proof follows Fagin et al. (2003). Consider an element x ∈ R△
T . Assume, without loss of generality, that x ∈ R; therefore, x 6∈ T . There are two
cases: x ∈ S, in which case x ∈ S △ T but x 6∈ R △ S; or x 6∈ S, in which case

x ∈ R△ S but x 6∈ S △ T . Either way, if an element occurs on (contributes to) the

left side of Equation 7.27, it must occur on (contribute to) the right side. Equation 7.27

then holds, and therefore so does Equation 7.24. �

Similar proofs hold for the metricity of 1− RBOMIN and 1− RBOEXT.

7.3.6 Ties and uneven rankings

Ties may be handled by assuming that, if t items are tied for ranks d to d + (t − 1),
they all occur at rank d. To support this, we modify the definition of agreement given

in Equation 7.3:

AS,T,d =
2 ·XS,T,d

|S:d|+ |T:d|
· (7.28)

Equations 7.3 and 7.28 are equivalent in the absence of ties extending over rank d,
but in the presence of such ties, the former formulation can lead to agreements greater

than 1.
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It occasionally happens that indefinite rankings are compared with different evalu-

ation depths on each ranking. One cause of such irregularity is that the providers of the

rankings are returning lists shorter than the evaluation depth chosen for the assessment

and different from each other. We will call such lists uneven rankings. For instance,

for an obscure query, one public search engine might return five results, another might

return seven. These can still be treated as indefinite rankings; there are many more web

pages beyond these depths, but they have not met the engine’s threshold of estimated

relevance. For the following discussion, let L be the longer of the two lists, with length

l, and S be the shorter, with length s.
The formula for RBOMIN given in Equation 7.11 handles uneven rankings without

modification, since it is implicitly assumed that ∀d ∈ {s + 1, . . . , l}, Sd 6∈ L; that is,
we assume maximal disjointness and are done with it. Conversely, RBOMAX is found

by assuming that every item in the extension of S matches one item in L, increasing
the overlap by one. Therefore, ∀d ∈ {s+1, . . . , l}, Xmax

d −Xmin
d = d− s, regardless

of the contents of the preceding lists. The definition of RBORES on uneven lists then

becomes:

RBORES(L, S, l, s) =

1− p

p





l
∑

d=s+1

d− s

d
pd +

f
∑

d=l+1

2d− l − s

d
pd +

∞
∑

d=f+1

(

1− Xl

d

)

pd



(7.29)

where f = l+ s−Xl is the rank at which maximum agreement becomes 1. Removing

the infinite sum using Equation 7.10 once again, and simplifying, results in:

RBORES(L, S, l, s) = ps + pl − pf

− 1− p

p

(

s

f
∑

d=s+1

pd

d
+ l

f
∑

d=l+1

pd

d
+Xl

[

ln
1

1− p
−

f
∑

d=1

pd

d

])

(7.30)

Modifying RBOEXT to handle uneven rankings is less straightforward. The extrap-

olation for even rankings is achieved by assuming the agreement in the unseen part

of the lists is the same as in the prefixes. However, agreement between L and S is

not known to depth l. And while agreement to depth s is known, truncation at this

depth loses information on the degree of overlap between L(s+1):l and S. Therefore,
extrapolation for uneven rankings must separately extrapolate agreement for S(s+1):l.

Consider the method of extrapolation for even lists. The agreement Ak at common

evaluation depth k is assumed to continue unchanged at later evaluation depths. In other

words, ∀d > k, Ad = Ak, and specifically Ak+1 = Ak. Referring to the definition of

agreement in Equation 7.3, this means that

|S:k+1 ∩ T:k+1| def= Xk+1 = Xk +Ak . (7.31)

If 0 < Ak < 1, which is generally the case, then working backwards through the

formula implicitly requires Xd>k to take on fractional values. This suggests the con-

cept of degree of set membership. An element occurring in the seen prefix will have a

membership degree of 1 or 0, depending on whether it is matched in the other list at the

current evaluation depth. An unseen element, however, is assigned under extrapolation

a (usually fractional) membership degree; one could think of it as a “probability of

membership”. The elements Sk+1 and Tk+1 in Equation 7.31, for even lists, each have

membership Ak. In the case of uneven lists, the conjointness of L(s+1):l is known to
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be either 0 or 1. Nevertheless, the membership of the unseen elements S(s+1):l can still

be set to As. This will provide an assumed Al, which can be extrapolated for elements

beyond depth l, unseen in both lists. The formula then is:

RBOEXT(L, S, l, s) =

(

Xl −Xs

l
+

Xs

s

)

pl

+
1− p

p

(

l
∑

d=1

Xd

d
pd +

l
∑

d=s+1

Xs(d− s)

sd
pd

)

(7.32)

Note that Xl here means the overlap on the seen lists at depth l, even though |S| < l;
the maximum value of Xl is therefore s.

Calculating RBOEXT on uneven lists in this way maintains two important criteria

met by extrapolation on even lists. First, RBOMIN ≤ RBOEXT ≤ RBOMAX. And

second, RBOEXT is non-increasing with deeper evaluation if Ss+1 or Ll+1 is found to

be disjoint, and non-decreasing if the element is found to be conjoint.

7.4 Experimental demonstrations

Section 7.3 has defined the RBO metric, and described how it meets the criteria for

an indefinite rank similarity measure, which the measures discussed in Section 7.2

failed to do. We now illustrate the use of RBO, first in comparing document rank-

ings produced by public search engines, and secondly as an experimental tool in the

research laboratory of the IR system developer. These domains involve non-conjoint

rankings, so rank similarity measures such as τ that require conjointness (described

in Section 3.3.6) cannot be applied. The only viable alternatives to RBO are other

non-conjoint rank similarity measures. We provide comparisons with two of these:

Kendall’s distance (KD) and average overlap (AO).

7.4.1 Comparing search engines

We begin by using RBO to compare the results returned by public search engines.

Twenty search engine users, drawn from the author’s colleagues and acquaintances,

were asked to provide search queries taken either from their recent search history or as

examples of queries they might currently be searching for. Each user returned between

three and eight queries, making a total of 113 queries, collected from mid-August to

early September 2008. The queries were then submitted once a day to a number of

public search engines, beginning on October 20th, 2008, and running up until February

26th, 2009. Eleven different search engines were searched, as listed in Table 7.1. Three

of these are the Australian portals of international search engines. In every case, queries

were submitted directly to the web site via URL manipulation and the HTML results

list was scraped; the search APIs of these engines were not used. Except where noted,

the top 100 results were retrieved from each search engine. Most search engines only

provide at most two results from the one host, with the second result folded directly

under the first, making the ranking between results from the one site non-determinable;

therefore, in the experiments reported here, only the first result from any given host

was retained. Result URLs were captured as returned by the search engines; no further

normalization was performed.

Public search engines commonly return ten search results per page, including on the

first results page. Therefore a reasonable choice of the p parameter is one that sets the
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Name URL Notes

Google www.google.com Global Google. Google maps,

news, blog results excluded;

Google books results retained.

Yahoo search.yahoo.com Global Yahoo!.

Live search.live.com Global Live.

Ask www.ask.com Ask.

Dogpile www.dogpile.com Dogpile. Maximum 80 results.

Sensis www.sensis.com.au Sensis. Maximum 10 results. Not

restricted to Australian-only

results.

Alexa www.alexa.com Alexa.

A9 a9.com A9. Maximum 20 results. Ceased

offering general web search in

January 2009. Prior to that, results

based on Alexa.

Google (AU) www.google.com.au Google Australia search portal.

Not restricted to Australian-only

results.

Yahoo (AU) au.search.yahoo.com Yahoo! Australia search portal.

Not restricted to Australian-only

results.

Live (AU) www.live.com Specified \?mkt=en-au. Not

restricted to Australian-only

results.

Table 7.1: Public search engines used in experimental demonstrations.

expected number of results compared by the p-persistent user to 10. This is achieved
by setting p to 0.9. As described in Section 7.3.3, this is equivalent to giving the first

ten results 86% of the weight in the similarity comparison. It is also convenient to

concentrate on the top ten results because, for interface reasons, it was not practical to

retrieve more than the first ten results from some search engines. This again illustrates

the importance of a rank similarity measure being monotonic in depth: we will be

comparing rankings with a variety of depths, some going to depth 100, others to depth

10, and yet others somewhere in between, and we want the similarity scores produced

to be comparable across all cases.

Table 7.2 gives the mean RBOEXT, p = 0.9, between the different global search

engines across all 113 queries on December 5th, 2008. The key to interpreting the

numerical value of these scores is to remember that RBO is a measurement of expected

overlap, or equivalently of a weighted mean of overlap at different depths. Thus, the

RBO score of 0.25 between Google and Live can very roughly be understood as saying
that the two systems have 25% of their results in common (as a decaying average

over increasing depths). Contrary perhaps to expectations, different search engines are

in fact returning quite different results, or at least result orderings, to queries; only

a handful have an RBO above 0.25. By the date of this run of queries, Alexa had

started to draw its results from Live, which is why the RBO score between them is so

high. Previously, Alexa had been an independent search engine, which A9 drew its

www.google.com
search.yahoo.com
search.live.com
www.ask.com
www.dogpile.com
www.sensis.com.au
www.alexa.com
a9.com
www.google.com.au
au.search.yahoo.com
www.live.com
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Figure 7.5: Mean RBO between Google and other search engines for different values

of the p parameter. Raising p increases the depth of comparison.

search results from, and these two engines had a very high RBO (around 0.9). Not

long after December 5th, 2008, A9 stopped offering general-purpose web search and

became solely a product search aggregator. The Dogpile engine aggregates results from

Google, Yahoo, Live, and Ask. The RBO figures suggest that Google results are given

the strongest weighting by Dogpile; the fact that Ask is higher than Yahoo and Live

may be because Ask is itself closer to Google. The Sensis search engine is quite unlike

all the others, as to a lesser extent is A9. Table 7.3 shows the RBO between the global

and Australian-localized search results for the search engines that provide localized

variants. Apparently, Google performs much lighter localization than either Yahoo or

Live.

Other values than 0.9 could reasonably be chosen for the p parameter in search

engine comparisons. The researcher might wish to concentrate more heavily on the

user experience of the first few results, in which case p values of 0.8 or even 0.5 might

be appropriate, leading to expected comparison depths of 5 and 2, respectively. Con-

yahoo live ask dogpile sensis alexa a9

google 0.20 0.25 0.35 0.38 0.03 0.23 0.11

yahoo 0.21 0.17 0.24 0.03 0.21 0.08

live 0.18 0.24 0.03 0.76 0.10

ask 0.27 0.04 0.17 0.09

dogpile 0.03 0.23 0.08

sensis 0.03 0.02

alexa 0.09

Table 7.2: Mean RBO, p = 0.9, between non-localized search engines across 113 user
queries issued on 2008-12-05.
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Figure 7.6: Mean RBO, p = 0.9, across 113 queries between Sensis and Google, and

between Alexa and Live, calculated daily over the experimental period.

versely, a deeper, more system-centric comparison might be preferred, suggesting p
values of 0.95 or 0.97 (expected depths of 20 and 33.3). Or the researcher might be

interested to contrast a range of comparison depths. Because RBO’s top-weightedness

is tuneable via the p parameter, such investigations are possible. A question that can be

addressed in this way is whether search engines are more similar to each other at the

top of their rankings than further down. Raising the p value deepens the comparison,

allowing us to explore this hypothesis. Figure 7.5 shows that Yahoo and Live are indeed

more similar to Google at higher ranks than lower, but only mildly so. The difference is

much stronger for Ask, suggesting that it is (by design or coincidence) strongly tuned

towards delivering a similar first-page experience to Google. The rise, with increasing

depth, of Dogpile’s similarity to Google in Figure 7.5 might on a naive reading lead

to the (surprising) interpretation that Dogpile draws more results from Google further

down the ranking than higher up. But this interpretation fails to appreciate that aggre-

gated results are supplementary, one engine drawing in another’s answers; Dogpile’s

similarity to Live and Yahoo (not shown) rises even more strongly with depth. The

function of RBO here is to alert us to an anomaly: Google’s relationship to Dogpile is

quite different from its relationship to the other engines.

During the period of the study, Sensis ceased being an independent search engine,

and switched to deriving its results from Google. Similarly, Alexa changed to deriving

its results from Live. These events can be traced by looking at the mean RBO scores

google yahoo live

RBO 0.77 0.35 0.44

Table 7.3: Mean RBO, p = 0.9, between localized and non-localized search engines

across 113 queries issued on 2008-12-05.
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Search

engine

Day-to-day Start-to-end

mean sd median mean

google 0.91 0.08 0.94 0.50

yahoo 0.94 0.09 0.98 0.45

live 0.94 0.12 1.00 0.43

ask 0.94 0.13 1.00 0.41

Table 7.4: Rate of change of search engine results over time, as measured by RBO

between sequential daily runs (left) and between start and end of experiment (right).

of the respective system pairs over time, as displayed in Figure 7.6. Evidently, Sensis

switched to using Google on Day 57 (December 15th, 2008), while Alexa moved to

using Live on Day 47 (December 5th, 2008), initially with some modifications, and

almost verbatim from Day 62 (December 20th). The dip in similarity between Alexa

and Live on Day 122 (February 18th, 2009) is due to Alexa giving idiosyncratic results

on this day; why it does so is not clear. (Due to a problem with the query processor,

complete results are not available for Sensis prior to Day 47.) Kendall’s distance and

average overlap detect similar overall trends to those shown in Figure 7.6, but show rel-

atively greater similarity between Sensis and Google after the switch. We hypothesize

that Sensis may be seeding (possibly localized) results into the top of the ranking pro-

vided by Google. The top-weightedness of RBO would detect such top-heavy seeding

more effectively that Kendall’s distance or average overlap.

Another question of interest is how much the results of different search engines

change over time. This gives a sense of how dynamic a search service is, either in

its crawling policy, or through changes in its ranking computation. For each of the

113 queries, the RBO between one day’s results and the following day’s results was

calculated, for all 129 days in the experimental set. For each search engine, the mean

and median across all day-to-day RBO scores were calculated, as was the mean of the

standard deviation of RBO scores for each query over time. The results are shown

in Table 7.4. Results tend to be relatively stable from one day to the next; indeed,

for Live and Ask, the “typical” (median) result does not change at all. The results

from Google show the highest rate of change. Additionally, changes to Google results,

and to a lesser extent those of Yahoo, tend to be continuous and even (median closer

to mean, low standard deviation), whereas changes to Live and Ask results are more

sporadic (median further from mean, high standard deviation). Also shown is the mean

RBO between result lists taken from towards the beginning of the experiment (Days

16 through 19) and then towards the end (Days 111 through 114), 16 pairs in total for

each query and each system. Query results have shifted significantly over the three

months, but systems are still more similar to the time-shifted versions of themselves

than (referring back to Table 7.2) they are to each other. Interestingly, while Google

shows more day-to-day change, it shows the least amount of long-term change. This

latter result is significant in a two-sample, two-tailed t-test at 0.05 level between Google
and each of the other search engines, but differences between the other engines are not

significant.

It is informative to compare the RBO results with those obtained by using Kendall’s

distance at depth k = 100, reported in Table 7.5. The large degree of disjointness

between results causes Kendall’s distance to return negative values for all except the

derivative Live–Alexa pair. Negative values make little sense in this application: there
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is no sense in which any of these search engines are giving rankings negatively cor-

related with any other. Kendall’s distance gives different relative results than RBO

in a number of cases. For instance, RBO reports Dogpile to be closest to Google, but

Kendall’s distance places it closer to Yahoo; this is because on average Dogpile appears

to pull more results from Yahoo than from Google (mean agreement at one hundred is

0.49 for Yahoo, and 0.30 for Google), but seems to give a higher ranking to the re-

sults from Google. Similarly, of the independent systems, RBO places Ask as being

closest to Google, whereas Kendall’s distance places it as being farthest away; again,

in this case, Kendall’s distance is following agreement at one hundred. Thus, although

Kendall’s distance is by design a correlation metric, its lack of top-weightedness and

the highly non-conjoint nature of these indefinite rankings has it tending towards an

unweighted measure of set agreement.

Too much significance should not be attached to these results as they stand. A

rigorous examination of search engine similarities would start from these high-level

RBO figures, not finish with them. Nevertheless, these comparisons do give a flavour

of the analysis that a suitable rank similarity measure allows us to make upon search

engine results, and indicate that RBO is uniquely suitable for these purposes.

7.4.2 Experimenting with information retrieval

In this section, we examine the use of RBO in a typical research situation, where an IR

system is being modified, and the researcher wishes to measure how much the modifi-

cation is changing the results. The researcher may be using the rank similarity measure

as a proxy for a retrieval effectiveness metric. For instance, an efficiency change might

have been made, and the rank similarity comparison is being used as an indicator of the

degradation in effectiveness that the change may have caused, as with our first exam-

ple below. Using RBO is attractive in this situation because performing the relevance

assessments needed for effectiveness evaluation is expensive. If an initial examination

with RBO determines that only slight changes have occurred in (top-weighted) ranking

order for some or all topics, then the expense of relevance assessment on those topics

can be avoided. Or the researcher may simply be measuring ranking fidelity as such,

as in our second example.

Query pruning was mentioned in Section 7.1. It is a technique in which the amount

of memory that is used in query processing is limited, and the amount of processing

time reduced, but at a possible cost in retrieval accuracy and effectiveness. There-

fore, if the results of a pruned system differ from those of an unpruned one, this sug-

yahoo live ask dogpile sensis alexa a9

google −0.60 −0.56 −0.66 −0.20 −0.93 −0.58 −0.80
yahoo −0.55 −0.75 −0.04 −0.94 −0.56 −0.85
live −0.73 −0.31 −0.93 0.62 −0.81
ask −0.41 −0.91 −0.73 −0.83

dogpile −0.93 −0.35 −0.82
sensis −0.93 −0.95
alexa −0.83

Table 7.5: Mean Kendall’s distance at depth 100 between non-localized search engines

across 113 user queries issued on 2008-12-05.
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Figure 7.7: Similarity of query-pruned and unpruned runs. Kendall’s distance and

RBOwith different p parameters are calculated at increasing depths, averaged across all

topics. The upper and lower bounds and extrapolated values are shown for RBO. The

corpus is wt18g, and the queries are TREC queries 551–600, title only. The retrieval
engine is Zettair 0.9.3, using the Dirichlet similarity metric. Pruning is as described

in Lester, Moffat, Webber, and Zobel (2005), with a limit of 1,000 accumulators, com-

pared to no accumulator limit.

gests (though does not by itself prove) a degradation in effectiveness. Figure 7.7 gives

the results of using RBO and Kendall’s distance in a query pruning experiment. The

query-pruned results are compared to the unpruned results, with evaluation carried out

to varying depths. Here the unpruned results are the objective or “gold-standard” rank-

ing, from which the pruned results deviate. All extrapolated RBO values and also

Kendall’s distance decrease as the depth of evaluation increases. This is because query

pruning tends to have a greater effect on late-ranking than top-ranking documents. The

extrapolated RBO value asymptotes to its final value relatively quickly, even for the

very deep p = 0.998 evaluation. On the other hand, the Kendall’s distance score is still
falling at depth 1,000, and it is not clear what value it is asymptoting to, if any. We see

here clearly that Kendall’s distance is a measure, not on the full list, but on the prefix.

In contrast, base plus residual RBO is a measure on the full list, and even the extrapo-

lated value shows greater stability. It should be noted that all the p values chosen here

are quite high. If one were using RBO as a proxy for a retrieval effectiveness metric,

p = 0.98 would be at the upper end of the values one would be likely to choose, in

which case the value has already converged by depth 200.
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Figure 7.8: Similarity of runs with different similarity metric tuning parameters.

Kendall’s distance and RBO with different p parameters are calculated at increasing

depths, averaged across all topics. The upper and lower bounds and extrapolated values

are shown for RBO. The corpus is wt18g, and the queries are TREC queries 551–600,
title only. The retrieval engine is Zettair 0.9.3, using the Dirichlet similarity metric.

The µ parameter of the Dirichlet metric was set to 500 for one run, and 5,000 for the

other.

Figure 7.8 shows a different kind of alteration to an information retrieval system.

In this case, a language model smoothed with Dirichlet priors is being used to score

the similarity between query and documents. This query–document similarity measure

takes a parameter µ, which balances the influence of the relative weighting of terms

within a document: with lower µ values, relative weighting is emphasized, meaning

some terms have much higher impact than others, whereas with higher µ values, each

term tends to have similar weighting and what matters is simply the presence or ab-

sence of the term (Zhai and Lafferty, 2004). Two different values of µ are being tried

in Figure 7.8 as part of a parameter tuning experiment, with the mean RBO across a

set of topics being displayed. Here, neither parameter value is the baseline or objective

value, from which the other parameter is deviating and presumably degrading. Rather,

the interest is in seeing how much difference is caused by altering the parameter. In

contrast to Figure 7.7, the RBOEXT and Kendall’s distance scores trend up as depth

of evaluation increases, not down. The reason is that parameter tuning tends to cause

localized perturbations in ordering; as the depth increases, the degree of overlap in-

creases too. All point measures give rising similarity values with depth, but Kendall’s
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distance rises considerably more than even the highest-p RBO, and it appears not to

have asymptoted by depth 1,000, even though the extrapolated RBO values stabilize

well before that. Although Kendall’s distance is derived from a metric that is based

upon counting perturbations, it seems to be even more strongly affected by overlap

than RBO itself is.

Of course, the preceding two cases are only examples. Different ranking pertur-

bations will result in different effects on rank similarity measures. Nevertheless, these

examples serve to illustrate two important points. The first is that the values of non-

convergent measures evaluated to shallow depths can be very different from those at

deeper depths, and so such measures cannot be regarded as adequate similarity mea-

sures on indefinite rankings. In contrast, a convergent metric gives hard bounds on

infinite evaluation. The second, related point is that Kendall’s distance and other top-k
metrics cannot be regarded as single measures, but rather as families of measures, with

each value of k (that is, depth of evaluation) instantiating a different member of the

family. Kendall’s distance is at least as dependent on its cutoff depth k as RBO is on

its parameter p.

7.4.3 Correlation with effectiveness measures

We conclude by examining the relationship between rank similarity measures and

changes in retrieval effectiveness. The metric used to calculate retrieval effectiveness

is average precision (AP), which was defined in Section 3.2.2. To calculate the correla-

tion between effectiveness and rank similarity measures, one could take actual retrieval

runs, perturb their rankings, and calculate the similarity between the original and per-

turbed rankings on the one hand, and the change in effectiveness on the other. Actual

rankings, however, are typically far from ideal ones, so randomly perturbing them,

while decreasing the ranking similarity, has a rather noisy influence on effectiveness.

Instead, we take a simulated approach. An ideal ranking of 10 relevant and 90 irrele-

vant documents is progressively degraded. The degradation consists of a sequence of

25 swaps between a relevant and a non-relevant document, chosen at random. After

each such swap, the AP of the degraded ranking, and similarity of the degraded to the

ideal ranking, is calculated and plotted. For calculating AP, the total number of relevant

documents is set to 10 (that is, all relevant documents are contained in the depth 100
ranking).

The results of this simulated experiment are given in Figure 7.9. A total of 100
degradations were performed; each of the above figures therefore consists of 2,500
points. The Kendall’s τ between the AP score and the similarity value of the data

points is also displayed. Kendall’s distance shows a weaker correlation with AP than

either of the top-weighted metrics. Moreover, it is more sensitive to the cutoff point.

Cutoff at 10 gives the best correlation with AP across the whole sequence, but poor

correlation at the top, and insensitivity to relationships beyond depth 10. Evaluation to
depth 100 shows quite poor correlation. Average overlap shares some of this sensitivity

to evaluation depth, whereas RBO has high fidelity at high similarity, regardless of the

p value chosen. A comparison between the average overlap and RBO figures illustrates

how intimately average overlap is linked with the choice of cutoff depth. Cutoff depth

has at least as strong an effect on average overlap as changes in the p parameter has on

RBO, even though as argued before cutoff depth is essentially arbitrary in an indefinite

ranking.
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Figure 7.9: Correlation between the average precision (AP) of a degraded ranking on

the one hand, and the rank similarity between the degraded and the ideal ranking on the

other, for the experiment in which we start with a ranking of 10 relevant followed by

90 non-relevant documents, then randomly swap relevant and non-relevant elements 25
times, recording similarity and AP at each iteration, with 100 independent repetitions.

The similarity metrics used are Kendall’s distance (KD) at different depths; rank-biased

overlap (RBO) with different p values; and average overlap (AO) at different depths.

7.5 Summary

Non-conjoint, top-weighted, and incomplete ranked lists—what we have called indefi-

nite rankings—are encountered in the document rankings returned by retrieval systems,

and in many other domains as well. An appropriate measure of similarity between

indefinite rankings has, however, been lacking. Such a measure must recognize the

peculiar characteristics of indefinite rankings. It must be top-weighted, giving more

emphasis to the degree of similarity at the top of the ranking than further down. It must

handle non-conjointness in the rankings, neither requiring every item to appear in both

rankings, nor making arbitrary assumptions about where items uniquely seen in one
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ranking are located (past prefix depth) in the other. And finally, it must recognize that

the observed rankings are incomplete prefixes of much longer full rankings, and that

the cutoff depth of the prefix is essentially arbitrary. A corollary of this incompleteness

is that what is desired is a measure of the similarity of the full rankings, not merely of

the observed prefixes. No existing similarity measure on ranked lists meets all of the

above requirements.

In this chapter, we have introduced a new similarity measure on ranked lists, namely

rank-biased overlap, or RBO. It is tuneably top-weighted, handles non-conjointness in

the rankings, and is not tied to a particular prefix length. Most importantly, it is a

similarity measure on the full rankings, even when only a prefix of each is available

for comparison. It achieves this by using a convergent set of weights across successive

prefixes, preventing the weight of the unseen tail from dominating that of the observed

head. As a result, partial evaluation allows us to set strict upper and lower bounds on the

similarity of the full rankings—a similarity whose exact value could only be calculated

by evaluating the rankings in full. The RBO measure is parameterized to tune the

degree of top-weightedness, and we have provided guidelines on the parameter choice.

An extrapolated RBO value has been derived to give a reasonable point estimate on

this similarity. This extrapolated value is itself monotonic on agreement. If the degree

of agreement increases with deeper evaluation, the extrapolated value will go up; if

agreement decreases, the extrapolated value will go down. Naturally, the extrapolated

value is bounded by the upper and lower bounds of the RBO range. We have also

proved that the distance measure 1−RBO is a metric, and extended RBO in a consistent

way to handle tied ranks and prefix rankings of different lengths. Finally, we have

illustrated the use of RBO in comparing public search engines and in the IR researcher’s

laboratory, demonstrating that it gives stabler and more intuitive results than alternative

measures.

Rank-biased overlap can properly be considered as a branch of a family of measures

on indefinite rankings, which are overlap-based measures using a convergent set of

weights over prefixes. We have argued that an overlap-based measure makes more

sense for indefinite rankings than do measures derived from the notion of correlation.

Indeed, our illustrative examples suggest that, in the presence of high and variable

degrees of non-conjointness, correlation-based metrics tend in practice to degenerate

into unweighted measures of set overlap.



Chapter 8

Conclusions

The test collection method of retrieval evaluation is half a century old, and the method’s

realization in TREC as a community activity has been underway for nearly twenty

years. The experience of TREC has inspired researchers to tackle many questions

in the analysis of retrieval evaluation. How reliable are evaluation results, and how

can this reliability be increased? How many queries do we need? What is the effect

of pooling’s incompleteness, and how can we compensate for it? How deep should

pooling be? What constitutes statistical significance for retrieval experiments? What

can we learn about system performance without using human assessment? This thesis

has contributed answers to these questions: score standardization to improve result

clarity and comparability (Chapter 4); power analysis for the design of reliable and

efficient experiments (Chapter 5); score adjustment for the correction of pooling bias

(Chapter 6); and rank-biased overlap for the comparison of document rankings without

human assessment (Chapter 7).

As important as these technical questions is the role that evaluation plays in re-

search practice. Reusable collections enable comparable experiments, but the compar-

isons need to be made, recorded, and referred to. We need continually to ask whether

evaluation methods are measuring the desired properties, as retrieval domains and ap-

plications change. Preciseness of measurement is of little value, and is even misleading,

if the wrong thing is being measured.

This concluding chapter begins by listing the thesis’s outcomes in advancing the

state of the art in test collection evaluative practice (Section 8.1). The chapter then con-

tinues to examine the use and influence of the test collection methodology. Section 8.2

poses a basic, but rarely asked, question: is retrieval effectiveness, as measured against

test collections, improving over time? Then, in Section 8.3, we examine the challenges

facing collection-based evaluation, and ask whether the method’s strong influence has

been entirely beneficial.

8.1 Thesis outcomes

The thesis began by proposing the use of score standardization to improve result clar-

ity and comparability (Chapter 4). Topics typically vary in difficulty more than re-

trieval systems do in effectiveness, leading to instability in mean scores, difficulty in

interpreting these scores, and obstacles to comparing scores between collections. The

existing approach to varying topic difficulty is to normalize per-topic scores by the

185
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theoretical maximum score that could be achieved for the topic, given the number of

relevant documents. But the theoretical maximum score is a poor indicator of topic

difficulty. Instead, we proposed that topic difficulty should be directly observed on the

scores achieved by a set of reference systems run against the topic and collection. The

mean and standard deviation of the per-topic reference system scores are then used

to standardize system scores achieved on that topic. Standardization removes inter-

topic variability for the reference systems, and greatly reduces it for new systems, too.

Standardized system mean and per-topic scores are interpretable in isolation, as ex-

pressions of the system’s performance relative to the reference baseline. Moreover, if

the one reference set is run across multiple collections, it becomes possible to compare

scores achieved on different collections. Standardization-enabled inter-collection com-

parison can even be performed retrospectively, as is illustrated in Section 8.2.1 below.

Score standardization is the first contribution of the thesis.

The importance of applying tests of statistical significance to retrieval experiment

results has been recognized in the retrieval community for at least a decade, but no

work has been done on design-phase statistical analysis. Chapter 5 of this thesis in-

troduces the use of power analysis for the design of reliable and efficient experiments.

The power of a significance test is the probability that it will detect a specified true

difference in effectiveness between systems, for a certain number of topics. Key to

design-phase power analysis is an estimation of the likely standard deviation of ex-

perimental subject values; in retrieval evaluation, of per-topic, between-system score

deltas. We have demonstrated that there is no single, typical (say) AP delta standard de-

viation, and that the value needs to be estimated afresh for each system pair. The most

efficient approach is that of incrementally adding new topics until the desired power is

achieved. We have shown, however, that the incremental approach leads to a slight bias

in results, and we have provided an empirical quantification of this bias. Finally, power

analysis provides a handy tool for assessing the degree of technological improvement

that an experimental setup will be able reliably to detect. Using power analysis as an

analytical tool, we argue that the standard 50-query topic sets are too small to reliably

detect incremental improvements in a mature technology such as information retrieval.

Power analysis is the second contribution of the thesis.

As corpora and topic set sizes grow, the same expenditure of resources in pooling

leads to increasingly incomplete test collections. Assuming unpooled documents to

be irrelevant is biased against new systems; ignoring them is biased in new systems’

favour. In Chapter 6, we propose the method of score adjustment for the correction of

pooling bias. The idea is to perform a leave-one-out experiment on topics for which

a system is fully pooled, and use the results to estimate the bias the system suffers for

topics on which it is unpooled. Unpooled scores for the system are then adjusted to

counteract this bias. The score adjustment method is simple, statistically unbiased, and

metric agnostic, and can be applied post-hoc to existing assessments. It is in particular

suited to a dynamic evaluation environment, to which new topics are continually being

added, and in which retrieval algorithms are constantly being developed and tuned; the

method allows existing topics and their qrels to be reused, without have to go back and

reassess them. Score adjustment is the third contribution of the thesis.

The methodology of system comparison in retrieval experiments has overwhelm-

ing been focused on effectiveness evaluation. There are, though, many circumstances

in which we wish to compare the output of systems without performing relevance as-

sessments, either as a cheaper proxy to effectiveness evaluation, or because we are

interesting in system similarity in its own right. The document rankings produced by

retrieval systems, however, have a number of special features. The top of the ranking
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is more important than the tail; the rankings are incomplete and therefore mutually

disjoint; and the rankings are cut off at an essentially arbitrary depth. In Chapter 7,

we identify these features as characterizing an indefinite ranking, and argue that there

are no satisfactory indefinite rank similarity measures described in the literature. We

therefore propose our own: rank-biased overlap (RBO). The RBO measure is based

on set overlap, a more intuitive foundation for indefinite rankings than rank correla-

tion methods. The measure has a simple user model underlying it, and an informative

probabilistic interpretation. Through experiments with the result lists of commercial

web search engines, we demonstrate that RBO is a suitable and flexible measure of

similarity between document rankings. The proposal of RBO, as the first true measure

on indefinite rankings, is the fourth contribution of the thesis.

These four contributions constitute an important technical advance to the test col-

lection method of retrieval evaluation. As important as technical correctness in evalua-

tion methodology, however, is the use that evaluation methodology is put to in practice.

In the light of these technical contributions, the remainder of this chapter examines the

current and likely future direction of retrieval evaluation.

8.2 Trends in retrieval effectiveness

Standard evaluation methods and data sets allow results to be compared across systems,

groups, and time. In TREC, between-group comparability is achieved by having mul-

tiple teams participate in each year’s tasks, with the same availability of training data

and opportunity for preparation. For comparisons of technology at a point in time, the

TREC process has worked well. The rapid adoption of many early advances, such as

the BM25 similarity metric and document length normalization in similarity scoring,

can be attributed to the superiority of these approaches as demonstrated in TREC tasks.

Contrasting systems at the one time and on the one task is, however, only a single

form of comparison. We also need to assess changes in effectiveness over time. Sur-

prisingly, though, such longitudinal assessments have been rare and incomplete. Here

we investigate two related questions about the development of retrieval effectiveness:

first, whether effectiveness has been measurably improving amongst TREC partici-

pants (Section 8.2.1); and second, whether published results on TREC collections have

been improving over time (Section 8.2.2). The answer to both questions is a fairly clear

no, raising questions about experimental and reviewing practice (Section 8.2.3).

8.2.1 Result trends at TREC

Comparing results within a given year of a TREC task is straightforward, but doing so

between years is not. An immediate problem is that no track has continued throughout

TREC, and different tracks vary considerably in their tasks. The longest-running track

was the AdHoc Track, from TREC 1 through TREC 8, substantially continued as the

Robust Track from TREC 2003 to TREC 2005. Attention in this section is restricted to

these two tracks, which will be referred to as “the ad hoc tracks”. The analysis omits

TREC 1, for which runs are not available, and TREC 2, for which many are malformed.

Even within the one track, comparing results between years is tricky. The high

variability in topic difficulty means that, even if each year’s task was the same, col-

lection difficulty would vary. But in most tracks, the task is not precisely the same

each year. In the AdHoc Track, for instance, the document collection varied between

years, and topic formats changed repeatedly until TREC 6. Because of the varying
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Figure 8.1: The performance of the first 8 TREC-participating versions of SMART

against the first 8 TREC AdHoc test collections. The data is taken from Buckley (2005,

page 311).

difficulty of the ad hoc tasks, scores cannot directly be compared between years. One

solution would be to run each year’s systems again on the following year’s task, but

this was not done systematically at TREC. The SMART team, however, did undertake

their own analysis, evaluating SMART versions from the first eight TRECs against the

first eight AdHoc collections. The outcome is shown in Figure 8.1, using data taken

directly from Buckley (2005). Variance between collections exceeds variance between

system versions. Taken as a whole, though, the figure shows a steady increase in ef-

fectiveness up to TREC 4 or TREC 5, and a plateau in performance from then on.

These results were cited in justification of the suspension of the AdHoc Track follow-

ing TREC 8 (Voorhees and Harman, 1999).

The complete crossing of systems with collections makes the SMART analysis

persuasive, but it only demonstrates the development of that team’s technology. It is

possible that systems based on different principles would exhibit different behaviour.

What of the other participants in TREC? Answering this question requires a method of

controlling for collection difficulty. Fortunately, we have developed just such a method,

namely score standardization (Chapter 4).

Score standardization requires a set of reference systems. To create this refer-

ence set, five publicly available retrieval systems (Lucene, MG, Zettair, Indri, and

Terrier) were run against the ad hoc collections in a total of seventeen different con-

figurations (Armstrong, Moffat, Webber, and Zobel, 2009c). Standardized scores were

mapped to the normal CDF (Section 4.7.3), to bring them within the [0, 1] range. De-
spite the different systems and varying configurations, the reference set provided a

narrow distribution of middling scores, relative to the original systems; today’s out-of-

the-box retrieval technology still cannot match the best (albeit highly-tuned) original

TREC runs. Two virtual reference systems were therefore added for smoothing: one

defective system scoring 0 for every topic, and another, perfect system scoring 1.
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Figure 8.2: Standardized scores, under normal CDF mapping, of automatic TREC

participant systems in the TREC 3 through TREC 8 AdHoc track, and the TREC 2003

through TREC 2005 Robust track. The thick horizontal line through each box shows

the median of the system mean standardized AP scores; the edges of the box show

the upper and lower quartiles; and the ends of the whiskers show the minimum and

maximum scores. A standardized score of 0.5 equates to the mean performance of the

nineteen reference systems, including the synthetic defective and perfect systems.

With the reference set constructed, standardized mean AP scores for all automatic

AdHoc and Robust participant systems were calculated, and their distribution in each

year compared. The result is shown in Figure 8.2. There is no sign of an upward trend

from TREC 3 onwards. Indeed, performance seems to fall off slightly in the following

few iterations, before recovering later. And the best system overall, across the entire

nine iterations and twelve years examined, is the top-performing system from TREC

3 (the original Okapi BM25 system, as it happens). In short, there is no evidence in

Figure 8.2 of a measurable increase in retrieval effectiveness amongst ad hoc TREC

participants since at least TREC 3, in 1994.

There is some disagreement between Figure 8.2 and the SMART analysis in Fig-

ure 8.1, which showed continuing improvement until TREC 4 or 5. It may be that

SMART took a year or two to catch up with advances in the state of the art. But while

the two analyses differ slightly in dating the start of the performance plateau, they

agree in finding no increase in effectiveness in the latter half of the AdHoc track, in the

late 1990s; and the standardized results extend this finding to Robust track in the mid

2000s.

So there does not seem to have been an improvement in ad hoc retrieval effec-

tiveness at TREC itself since the mid 1990s. But what about outside of TREC? We

examine this question next, through published retrieval results.
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Figure 8.3: Frequency of use of TREC test collections and pseudo-collections in SI-

GIR and CIKM papers. Only collections used in 5 or more publications are shown;

another 101 usages (38% of all usages) were for collections used in fewer than 5 pub-

lications.

8.2.2 Result trends in published research

The collections produced at each year’s TREC have been extensively used in subse-

quent research. By collecting published results, longitudinal performance information

can be gathered. An important difference between runs at TREC and subsequent ex-

periments is that the latter had the official qrels available to them, which can (inadver-

tently) lead to a training effect. And of course later researchers know how well earlier

approaches worked on each collection. These factors give post-TREC runs an advan-

tage that is independent of genuine technological improvement; experimental scores

reported on TREC collections may need to be discounted in response.

To examine performance trends, we surveyed published results on TREC ad hoc

style collections (Armstrong, Moffat, Webber, and Zobel, 2009a). The surveyed venues

were SIGIR from 1998 to 2008, and CIKM from 2004 to 2008. Both full papers and

posters were included. All reported mean system AP scores on the TREC AdHoc,

Robust, Web, and Terabyte collections, and subsets thereof, were recorded, exclud-

ing cases where training was directly performed on the test set, or where the reported

results appeared incorrect (such as incompatible AP and P@10 scores). Some 22 pub-

lications were excluded on this basis, leaving a total of 106 papers, 85 from SIGIR and

21 from CIKM. A list of the surveyed papers is given in Armstrong et al. (2009a). For

each combination of publication, collection, and query type, the strongest baseline and

the best “improved” score was recorded. A total of 83 different collection variants were

used in these 106 papers; the more frequently used ones are displayed in Figure 8.3.

Of the 83 collections, 12 were used often enough, and over a long enough period, for

some indication of trends to be discerned. Here, we look at two of the most frequently

used collections; figures for all 12 are given in Armstrong et al. (2009a). (Note that

standardization cannot be used to combine this data into a single analysis, as per-query

scores, required for the standardization process, are missing.)
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Figure 8.4: Mean system AP scores reported in SIGIR and CIKM papers on the

TREC 7 AdHoc collection. Paired baseline and improved scores in each paper are

joined by a line. Short queries are title-only; medium are title plus description; and

long are all fields. The best original TREC automatic and automatic title-only scores

are marked by horizontal lines, along with third-quartile and median automatic scores.

Of the papers surveyed, 22 reported results on the TREC 7 AdHoc collection, totalling

36 baseline and 36 improved scores. (One paper could report results on more than one

query type.)

The AP scores reported against the TREC 7 AdHoc collection are shown in Fig-

ure 8.4. There is no clear upwards trend in reported scores over time. Indeed, the

mean of the system scores is lower from 2005 onwards than prior to 2005, both for im-

proved systems (0.23 in the latter period, 0.22 in the former) and for baselines (0.21 to
0.20). In addition, published results are rarely competitive with the best original TREC

systems. Only eight of the thirty-six baselines are at or above the third quartile of the

TREC participant runs, and over half the baselines are below the median. Only two im-

proved results, both from the same research group (Liu et al. (2005) and Zhang et al.

(2007)), beat the best original TREC automatic run. The pattern is one of results that

fall below the best TREC participant runs, with the same low baselines being improved

upon by similar amounts each year, and no trend of improvement over time. Never-

theless, a statistically significant improvement is claimed in 35% of these publications.

These figures are representative of results published on all AdHoc collections.

The pattern for the (more recent) Web and Robust collections is broadly similar,

although there is a greater tendency for an upwards trend in scores over time, and

also more examples of published results exceeding the best TREC systems, at least

for comparable (for instance, short) query types. The results for the most frequently-

used of the non-AdHoc collections, the TREC 8 Small Web collection, are given in

Figure 8.5. The slightly better trends in published results for these collections may be

due to the newness of the tasks, which leaves more room for improvement (and also

makes the original TREC benchmarks less demanding). But still, the trend in scores is

mixed and far from cumulative.
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Figure 8.5: Mean system AP scores reported in SIGIR and CIKM papers against the

TREC 8 Small Web collection. The “best TREC short” line is a lower bound, as not

all query types are specified in the Track reports. Of the papers surveyed, 12 reported

results on the TREC 8 Small Web collection, totalling 21 baseline and 19 improved

scores.

The survey of published retrieval results on TREC collections in this section renders

a similar conclusion to the analysis of the standardized scores of the original TREC

participants in Section 8.2.1. This conclusion is that there has been no clear, measurable

improvement in ad hoc retrieval performance over the past decade or more; certainly

not on the AdHoc newswire collections, and not convincingly so on web data. In

the following section, we consider the ramifications of these findings for the field of

information retrieval.

8.2.3 The practice of IR evaluation

Test collections enable comparable experiments, but comparisons over time have not

been regularly made. The longitudinal studies described in the previous sections un-

cover some less than encouraging findings. Dozens of papers that claim improvements

in retrieval effectiveness have been published in leading venues, adhering to the field’s

experimental standards, and frequently achieving statistical significance. And yet ad

hoc retrieval effectiveness has not measurably improved over the past decade and a

half—with little explicit public recognition of the fact.

Much of the benefit of test collection evaluation is lost if results are not recorded

over time. One should not have to spend a fortnight skimming conference proceedings

to determine the current state of the art, not least if one is a time-pressed paper reviewer.

We have created EvaluatIR, an online repository for retrieval results, as an example

of what best practice in this area should be (Armstrong, Moffat, Webber, and Zobel,

2009b).1

1http://evaluatir.org/

http://evaluatir.org/
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The availability of retrieval scores over time not only informs practitioners of the

general trend in performance. It also forces individual researchers to place their ef-

fectiveness results in a broader context. There may be good reasons why this year’s

method does not take last year’s best result as its baseline; but the previous high water

mark should at least be stated, and the reason for not starting at it justified. Otherwise,

researchers are left repeating the same effectiveness increments, without anyone being

properly aware of it.

There is, though, a more worrying interpretation of the combination of weak base-

lines and statistically significant improvements found in published results. The impor-

tance of testing for statistical significance has been established for over a decade (Zobel,

1998), and of comparing against a baseline for longer still. The review and publication

process means that we only see the work that has cleared this hurdle; and choosing

weak baselines makes it an easier hurdle to clear. Researchers who choose more com-

petitive baselines will have more difficulty in achieving significant improvements, or

any improvements at all. Their work may be more likely to be rejected by reviewers,

or self-censored by the researchers. Thus, it may be that experimental practice is not as

undemanding as the published results suggest. Rather, the formal, but incomplete, re-

quirement for experimental rigour may, perversely, be filtering the more rigorous work

out, and favouring the less demanding attempts. This interpretation of the published

record is another strong argument for making a collation of TREC and other published

results readily available for the use of reviewers.

Perversion of the publication review process aside, we are left with the question of

why there is no measurable upwards trend in ad hoc retrieval effectiveness, when mean

AP scores remain stuck around 0.35, a third of their nominal potential. It could be that

the field awaits a technological breakthrough in, say, deep natural-language processing.

It could also be that the problem lies in the task itself. Inter-assessor agreement is

often low (Voorhees, 1998), and title-only queries are frequently ambiguous and under-

specified. Perhaps retrieval is operating closer to its real effectiveness limit than scores

imply. Or, finally, it could be that real progress is achievable, but our test collections

lack the experimental power to detect it, as Chapter 5 suggests.

Our survey of published and TREC results has raised questions about the use and

interpretation of test collection evaluation. The formalisms of the methodology are be-

ing observed, but retrieval effectiveness is not measurably improving, and publication

practice is as much obscuring as revealing this lack of progress. Meanwhile, the nature

of information access is changing rapidly, on the web and elsewhere. Researchers must

keep abreast, and ideally ahead, of this change; and this places pressure on evaluation

technology. The next section discusses the challenges and opportunities facing the field

of information retrieval as it responds to these pressures.

8.3 Challenges and opportunities for IR evaluation

Evaluation practice is well-developed within information retrieval, placing the field

in advance of many other areas of computer science. But many challenges remain,

and new ones present themselves. This section is an examination of some of these

challenges. We begin in Section 8.3.1 with the problems of scale, data access, and co-

herence facing the test collection method. Section 8.3.2 then considers what IR has to

teach, and learn from, other domains and modes of evaluation. Finally, in Section 8.3.3,

we examine the place of evaluation in the research economy, and ask whether method-

ological strength is impeding the field’s flexibility and innovation.
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8.3.1 Extending test collection evaluation

The test collection model of evaluation, which is the focus of this thesis, has been

central to the achievements of the field of information retrieval over the past decades,

and will remain important to its progress in the future. As a panel of prominent re-

searchers noted recently, “robust and well-accepted experimental methodologies are

significant research accomplishments that do not happen often” (Callan et al., 2007).

Such a methodology, once built, is a valuable possession, worth much effort to renovate

and extend. This thesis is part of that effort. Many challenges face the test collection

methodology at present. Among these is reflecting the diversity and ambiguity of key-

word web search; handling the scale of data that the web provides; and accessing and

employing the usage data that is key to analyzing behaviour on the web.

Diversity, ambiguity, and coherence

The standard test collection model treats the relevance of a document to a query as a

discrete, independent, and absolute event: a document is either relevant to a topic, or

it is not, and its relevance is not affected by what else appears in the ranking (Sec-

tion 3.1.2). The reality of retrieval is more complex. Few users like to see the same

information repeated; and many queries are ambiguous. A good retrieval system will

make its results list diverse, to cover different aspects of complex information needs,

and different senses of ambiguous queries; and a good retrieval evaluation method will

reward such diversity.

The benefit of result diversity has been appreciated for many decades (Boyce,

1982), and the manual evaluation of topic aspects and sentence-level novelty has been

undertaken previously in the TREC Interactive and Novelty tracks (Over, 1997; Harman,

2002). But it is only recently that a concerted effort has been made to develop test col-

lections and metrics for the automated evaluation of diversity in search results (Clarke et al.,

2008), culminating in 2009 in the Diversity Task of theWeb Track (Clarke et al., 2009).

The long delay in implementing even such a seemingly minor (though in practice com-

plex) extension to test collection evaluation underlines how difficult and important the

development of an experimental methodology is.

The pre-eminence of web search emphasizes the importance of result diversity, due

both to the range of information sources and types on the web, and to the terse, am-

biguous nature of web queries. Diversity also fits within a wider emphasis upon whole-

of-page relevance: the organization and presentation of information in the results page

to maximize user satisfaction and minimize effort and confusion. One component of

the task is integrating information from multiple data sources, such as blog posts, news

items, and targetted advertisements, alongside traditional search results (Callan et al.,

2007). How should the effectiveness of such integration be evaluated? The technique

of side-by-side evaluation has been developed for assessing users’ whole-of-page pref-

erence (Thomas and Hawking, 2006), but unlike qrels in standard test collections, side-

by-side assessments are not reusable. Another aspect of organization and presentation

is in the summarization of search results; and while result snippets are a long-standing

feature of web engines, work on incorporating snippets into automated test collection

evaluation has only just begun (Turpin et al., 2009).

In whole-of-page relevance at least, practice is outstripping research. The major

search engines are increasingly competing on the presentation and organization of their

results, rather than simply their topical relevance. Moreover, new online search needs

are rapidly emerging, such as real-time search and micro-blogging. The challenge
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for the research community is to retain the relevance of their work to contemporary

practice, without abandoning the methodological rigour that has developed around the

established keyword and ranked list retrieval model. As we argue in Section 8.3.3, the

tension between rigour and innovation is not resolvable as a rational optimization along

a smooth continuum, by calmly trading off one for the other; there is a strong inertia of

structure and convention.

Scale and dynamism

Retrieval evaluation is challenged not just by the web’s diversity, but also by its scale.

Gathering a web-scale document corpus itself is within the resources of the public re-

search community, as shown by the billion-page ClueWeb collection, used in the TREC

Web Track since 2009 (Clarke et al., 2009). The problem lies in creating a reusable qrel

set for such a large collection—a problem increased by the need for larger topic sets

to reflect the diversity of web search. Sampling and inference techniques have been

developed to estimate, with reduced effort, the scores that participant systems would

achieve under full pooling (Aslam et al., 2006; Carterette, 2007); but the reusability of

qrel sets created in this way is unclear. The need to estimate such deep assessment is

itself questionable: shallow but broad evaluation gives greater statistical power (Chap-

ter 5), and is equally predictive of user satisfaction (Sanderson et al., 2010); but again,

such shallow assessments, gathered once for a static collection, are not reusable.

In addition to scale is the problem of change, in documents and in queries. The web

is highly dynamic, and search companies place increasing emphasis upon the freshness

of their results.2 A static web collection quickly becomes out of date. Staleness is of

particular concern where static and live resources are integrated in experiments, as is

increasingly done. For instance, a recent user study used the ClueWeb collection for

document retrieval, and fetched the corresponding snippets from a live web search

engine; but 35% of the results retrieved from ClueWeb were no longer in the search

engine’s index (Sanderson et al., 2010).

The issues both of scale and of change suggest the need to design a protocol for

extensible collections, rather than the static collections currently employed. In an ex-

tensible collection, assessments would be performed only shallowly, and on results

actually returned. Partial incompleteness in assessments would be dealt with initially

by inferential methods such as score adjustment (Chapter 6); once incompleteness had

become serious enough, more assessments would be performed. Crowdsourcing (dis-

cussed in Section 8.3.2) offers a possible, independent resource for such assessments.

Extensible collections would also allow for the addition of new documents to the cor-

pus and queries to the topic set. There are many problems with such an approach,

including the comparability of retrieval scores achieved on different versions of the

collection; and extensible collections would not meet all research needs. Nevertheless,

they seem an attractive option for research work on web-scale, and web-dynamic, data.

The availability of user data

The user is represented in traditional test collections through topics and relevance as-

sessments. But much of the most interesting data for research into search behaviour is

found elsewhere, in search logs, click-through records, and the information captured

by web browser toolbars. These sources provide a wealth of user data: when and in

2 http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html

(published 8th June, 2010; last retrieved 20th July, 2010).

http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
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what context users decide to search; how they reformulate their queries; how queries

relate to each other; when searches are successful and unsuccessful; and so on. These

are some of the most pressing questions for current retrieval research.

Such usage data is collected by search engines, but is not readily available to pub-

lic researchers. Privacy concerns are part of the problem, as the debacle of the AOL

query log release illustrates (in 2008, AOL publicly released a query log that had been

superficially anonymized; but sessions were readily linked back to users through per-

sonally identifying queries3). As importantly, usage data is proprietary information of

considerable business value; search companies are willing to release such data only

incompletely and with delay, if they are willing to release it at all. An effort to col-

lect equivalent information for public research, through the Lemur Toolbar,4 has been

abandoned due to lack of participation.

The asymmetry between public research groups and commercial search labs in

their access to usage data provides the latter with a clear research advantage. Pub-

lic researchers (and company researchers doing fully public research) seem destined

to rely upon commercial search providers for (frequently unsatisfactory) data sets to

work with. The danger is that the data paucity will feed a perception, if not a reality, of

growing irrelevance of public research to actual search engine practice. This is on the

face of it an undesirable state of affairs. But it might have the desirable side-effect of

forcing upon public researchers a renewed innovation in the problems they tackle, the

methods they use, and the solutions they propose.

8.3.2 Beyond Cranfield and outside IR

The previous section examined the challenges facing the relevance-centric, test collec-

tion model of retrieval evaluation. There are, though, others possibilities for retrieval

evaluation besides the test collection, and other fields besides information retrieval in

which the lessons of Cranfield and TREC can be applied. We investigate some of these

possibilities here.

Crowdsourcing

Test collection evaluation is founded on the assumption that human assessment is ex-

pensive and time-consuming. Evaluation must be designed to re-use this precious re-

source, even if that constrains the evaluation model’s realism and flexibility. But a

recent development has challenged these economic assumptions. The development is

that of crowdsourcing: the online distribution of human intelligence tasks (HITs), via

a service company such as Mechanical Turk,5 to casual piece-workers. Crowdsourc-

ing creates efficiencies of scale and automation in human studies. More significantly,

though, crowdsourced workers are willing to work cheaply, more cheaply even than

nominally remunerated in-laboratory subjects. A recent IR study reports paying an

effective rate of 80 cents an hour. Several thousand rank-pair comparisons were per-

formed by three hundred different workers for a total experimental budget of just sixty

dollars (Sanderson et al., 2010). Whether quite such a low level of payment is sustain-

ably consistent with reliable human effort may be questioned; nevertheless, the conve-

nience (or perhaps multi-nationality) of crowdsourced work does seem to substantially

reduce the required remuneration.

3 http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html (last retrieved 25th July, 2010.)
4 http://lemurstudy.cs.umass.edu/ (last retrieved 20th July, 2010).
5http://www.mturk.com/

http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html
http://lemurstudy.cs.umass.edu/
http://www.mturk.com/
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Crowdsourcing could simply be used to produce static test collections at reduced

expense. But the deeper change that it offers to retrieval evaluation is to make large-

scale live experiments, involving non-reusable HITs, affordable to projects on even

modest budgets. The growing interest in whole-of-page relevance, for instance, has

been mentioned previously. In the past, the chief obstacle has been how to re-use

discrete relevance assessments to perform this holistic evaluation. With cheap HITs,

though, reusing existing assessments can be foregone, and subjects can be asked to

compare results pages in their entirety—as indeed was done in the study by Sanderson et al.

(2010) cited above. Moreover, the crowdsourced setup provides human cognition on

tap within an almost-automated task. Crowd-sourced workers have even been inte-

grated as a text revision module within an interactive word processor (Bernstein et al.,

2010). The experimental environment, data, code, and even subject recruitment pro-

cess could be packaged up and made available on call, making human-cognition ex-

periments automated and reproducible. The proposal in Section 8.3.1 for extensible

collections driven by crowdsourced evaluation is an example of the software–wetware

experimental hybrid that is possible.

As attractive as possibilities of crowdsourcing appear, there are potential obstacles.

A basic one is ethics approval. Crowdsourcers work voluntarily; but is it ethical to

exploit this resource with so little remuneration? A second problem is assuring the

reliability of the data collected. Outright spam can be filtered by setting trap tasks,

ones to which the answer is known and which no attentive human would get wrong.

Spam aside, human subjects have varying levels of diligence, and assessing this in the

automated, faceless crowdsourced environment poses different challenges to doing so

in a lab. As cheap as crowdsourced evaluation is, it is hard to believe that it is done

to a high quality. In particular, evaluation tasks such as relevance assessment require

the subject to first imagine themselves performing a task in a real-life context, such

as searching to address an information need, and then to assess their satisfaction with

the results, given their imagined context. Such contextualized, subjective tasks are

cognitively more complex than the stereotypical HIT of, say, identifying whether a

picture is of a bird or a plane. How realistically they are performed by a throughput-

focused, online piece-worker may be questioned, and requires empirical investigation.

Beyond IR

Information retrieval was one of the first computing fields to employ human evaluation,

and it has a strong tradition of empirical work, built on well-developed methodologies,

particularly in automated, collection-based evaluation. Experience in retrieval can con-

tribute to the development of evaluation in other computing fields, as more and more

of them become enmeshed in human and social interaction.

An example of the scope for improved evaluation practice comes from the field

of keyword retrieval on structured data and databases (Webber, 2010). Database re-

trieval has traditionally been performed using formal query languages, such as SQL,

which precisely determine which records match the query. But the spread of free-

text querying through web search has provoked interest in applying keyword queries

to database retrieval. The initial practicalities of keyword search having been re-

solved (Agrawal et al., 2002), attention has turned to achieving and measuring effective

retrieval from these informal queries.

To date, however, evaluation practice in keyword retrieval from databases has fallen

well below the standards of information retrieval. While there are de facto some com-

mon corpora, each research group develops their own queries and performs their own
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assessments, hindering independent comparisons. Query sets are small, as few as 5
queries for each corpus and rarely more than 20, and unstable metrics such as MRR

and P@1 are favoured (Li et al., 2008; Luo et al., 2007), leaving experimental results

inconclusive. The home-grown queries are frequently slanted towards highlighting par-

ticular features of a research group’s approach. For instance, a retrieval method that

matches queries against schema terms will be tested with queries containing schema

keywords (Liu et al., 2006). Perhaps in consequence, each new method reports near-

perfect scores, and doubles or triples those of their re-implemented baselines, which

themselves had originally achieved flawless results (Liu et al., 2006; Luo et al., 2007;

Xu et al., 2009).

The prescriptions that the evaluation experience of information retrieval would

draw up for this situation are fairly clear: standard collections, with independently

determined information needs and relevance assessments; larger topic sets; and deeper,

more stable metrics (Webber, 2010). The need for more thorough, objective evaluation

along these lines has been recognized by the database community (Coffman and Weaver,

2010). To bridge the gap between the communities, the 2010 INEX evaluation forum

has added a track for data-centric XML to its traditional focus on semi-structured XML

documents.6 But even in so similar a field as keyword retrieval on databases, it is not

simply a matter of taking the IR methodology and copying it wholesale, since keyword

retrieval on databases has many distinctive features. A satisfactory evaluation model

must, for instance, take account of the structure inherent in the data, and the possibil-

ities this offers for query formulation, query processing, and results presentation. For

fields more distant from information retrieval than keyword retrieval on databases, the

required customization of method will be still greater. Nevertheless, the retrieval evalu-

ation experience offers valuable lessons for all fields of computer science on the power

(and pitfalls) of a standardized, repeatable, automated evaluation methodology.

8.3.3 Evaluation in the research economy

This thesis began with an historical view of retrieval evaluation’s past; it is appropriate

that it conclude with a sociological interpretation of its present. Evaluation plays a

crucial rule in the verification of scientific progress; but it also plays a central role in

the conventions of scientific practice, and in the exactions and disbursements of the

research economy. A rigorous evaluation methodology provides the verification and

measurement of improvements; but the existence of a strong, established methodology

can impede the flexibility, progress, and ultimately relevance of a research field.

The sociology of methodology

The applied sciences are directed towards scientifically validated technological ad-

vance and innovation. But the pursuit of this goal takes place within a structure of

convention, appraisal, and reward that shapes the field’s development. These influ-

ences converge on the research nexus of publication. Publication is not only the means

of communicating ideas; it also the emblem of an idea’s validity. And publication plays

a primary role in the success both of research projects and of the individual researcher.

Academic publication is governed by well-established conventions. Some disci-

plines have stricter conventions than computer science, dictating not just methodolog-

ical standards, but paper layout, terminology, and even section headings. Computer

6 http://www.inex.otago.ac.nz/tracks/strong/strong.asp

http://www.inex.otago.ac.nz/tracks/strong/strong.asp
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science, though, has its own standards, and within the discipline each field has its vari-

ants. These conventions determine what is good science, what is expected, what fits

the model, and what is unexceptionable.

A research methodology is rooted and grows within this conventional and economic

system. A clearly defined, familiar, and strong methodology scientifically validates

experimental results, by making them testable and reproducible (though not necessarily

useful or important). The possession of a strong methodology makes a field a more

rigorous science, places it further up the ladder of scientific status, and enables it to

look down on the fields below it and associate with the more respectable disciplines

above. Once a field has taken possession of such a methodology, it is reluctant to

relinquish it.

Above all, an established methodology plays a crucial role in the review process.

Studies that employ such a ready-made methodology already have a head-start on work

that must develop its own methods from scratch. Also, work that uses an established

methodology is both familiar and (socially, if not scientifically) validated. It is, there-

fore, all the more readily published. The advantage that methodologically conventional

work has over unconventional work is not dependent, though, on the real significance

and innovation of the research. On the contrary, conventional work is likely to be less

innovative and (once a methodology has been established long enough) more abstruse

and over-fitted to the methodology’s peculiarities.

The Cranfield “paradigm”

The preceding description of a science bound to a prescriptive methodology is an ide-

alized, or perhaps demonized, one. It would be a Kuhnian caricature (Kuhn, 1970) to

describe the field of information retrieval as constricted to the relevance-centric, test

collection model of what constitutes the field’s “science”. Other questions are asked

in the area, and other methods of evaluation are accepted and pursued. But certainly

the test collection methodology exerts a pervasive, normative influence. The strongest

advocates of the Cranfield tradition have even borrowed Kuhn’s language, and taken to

referring to “the Cranfield paradigm” (Voorhees, 2002, 2009a; Harman, 2010).

In Kuhn’s account, however, a paradigm is both hindrance and asset: a strong model

that validates a field, it is also a hard and inflexible one that holds it fixed and prevents it

from changing. The tendency of the test collection methodology to perpetuate a line of

research and publication that follows conventional lines, well after that line of research

appears to have been exhausted—the methodology’s paradigmatic tendency—can be

seen when we observe the continuing, and even increasing, popularity of collection-

based publications in Figure 8.6, despite the lack of improvement in the results they are

reporting (observed in Section 8.2.2). Thus, when papers refer to their investigations as

following “the Cranfield paradigm”, as Figure 8.7 shows they are doing with increasing

frequency, the self-characterization may be truer and more revealing than intended.

The test collection model exerts its influence directly and indirectly: directly, in

the status it imparts to publications that employ the methodology (and withholds from

those that eschew it); and indirectly, in setting a benchmark for empirical rigour. If

researchers do not follow the standard methodology, they must at least provide compa-

rable experimental validation. This can be viewed as “maintaining our standards”: the

field of IR has reached a high level of rigour, and the tradition must be sustained. But,

necessarily, new fields will have less developed methodologies, and less satisfactory

test data. Indeed, in the newest fields, particularly those inspired by application rather

than theory, it will still be unclear precisely what the correct questions are.
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Figure 8.6: Number of papers at SIGIR using TREC ad hoc style collections, as in-

cluded in the survey reported in Section 8.2.2 (left axis). The number of full papers

accepted at each year’s SIGIR is given (right axis), as a reference for conference size.

The surveyed counts are not directly a proportion of the full paper counts, as the for-

mer include posters. Conversely, the survey only counted papers meeting the survey’s

particular criteria, and understates the number of publications using TREC ad hoc style

test collections.
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per year, as reported by Google Scholar (retrieved: 13th July, 2010). Note that the final

bar, for 2010, covers only half a year.
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Finding evidence of an unwelcome publication bias caused by paradigmatic method-

ological preconceptions is difficult, because detailed conference and journal submis-

sion and rejection information is not available, and even if it were, it would be hard to

analyze objectively. We met the same obstacle in Section 8.2.2 to testing the hypoth-

esis that weak baselines help a paper achieve publication. As Church (2006) notes, it

is much easier to calculate the precision than the recall of a conference. A notorious

(and controversial) example of alleged methodological inflexibility is the rejection of

the original Page Rank paper from SIGIR in 1998, for (amongst other things) a lack

of experimental validation (Hersh, 2009), when there was at the time no suitable, pub-

licly available dataset on which to test the new algorithm—though the Google project

doubtless had the data internally.7 As a technical report (Page et al., 1998), the paper

has gone on to garner over 3,000 citations.8 There are also less concrete, but more per-

vasive, complaints from researchers working outside the test collection model about

the alleged rigidity of SIGIR’s evaluation hurdle.9

It could be argued that our implicit methodological meta-standards (standards for

what a methodology should be) have been developed in fields such as genetics and

pharmacology, where the subject matter (in the latter case, humans) and type of ques-

tion asked (does drug X cure disease Y?) change only gradually over time; and that such

meta-standards are inappropriate in an applied information science, where both subject

matter and questions of interest change rapidly. The dynamic environment of infor-

mation science may make it impossible for a methodology to be both long-established

and relevant. Technology evolves; scale balloons; information changes rapidly; and the

nature of online communication between humans and organizations is in constant flux.

By the time a problem has become concrete enough, and generated enough publicly

available data, to be addressed to the highest standards of empirical thoroughness, the

problem itself may have been passed by. To continue making useful progress, we may

have to live with being a softer science than we would like.

Measurability and innovation

Much of this thesis has involved the methods of statistics; and one of the key practical

lessons of statistics is to think not just about the data you see, but about the data you do

not. Although quantitative methods themselves fail us on such a high-level domain as

the sociology of methodology, considering the evidence you cannot see is crucial when

examining the role of an experimental methodology in a scientific discipline. A strong

and well-developed methodology is desirable, because it provides validation of results

and measurement of progress. Desirable too are improvements in the correctness and

rigour of method, such as have been proposed in this thesis. But neither rigour nor

methodology are ends in themselves. And the presence of a strong, but dated, method-

ology within a scientific discipline can have a detrimental influence on that discipline,

by straightjacketing research performed within the confines of the methodology, and

depreciating research performed outside it. A field can find itself fixated on what is

7I owe this observation to Jeremy Pickens; see http://blog.codalism.com/?p=984&cpage=1 (pub-
lished 23rd September, 2009; last retrieved 25th July, 2010).

8Reported by Google Scholar, 16th July, 2010.
9 “The SIGIR community is trapped by a very successful paradigm. People can do complex work, the

quality of that work can be measured, and progress made. [ . . . ] The bigger problem is that a successful
paradigm stifles innovation [ . . . ] We need to balance innovation (with its attendant imperfections) with more
methodologically-mature work.” Gene Golovchinsky, http://palblog.fxpal.com/?p=4283 (published
22nd July, 2010; last retrieved 25th July, 2010).

http://blog.codalism.com/?p=984&cpage=1
http://palblog.fxpal.com/?p=4283
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measurable, not what is innovative, interesting, or important; statistical significance

can drive out true significance.

In the dynamic environment of the information and computing sciences, it is dif-

ficult for a strong methodology to take hold. Researchers have only just delineated

what the real problems underlying a new field are, when the field itself is transformed.

When a strong methodology does emerge, it is understandable that information scien-

tists are very reluctant to release their hold of it, and be thrown back upon experimental

improvisation and uncertainty. In such an environment, a firm methodology is a real

achievement, and a valuable one, but one in general of a limited life span. But when

its proper life span is over, the scientific respectability it bestows to its adherents may

impart the methodology with a long-extended ghostly afterlife.

What, then, are the practical consequences of this picture for the field of infor-

mation retrieval, and for rigorous empiricists in information science in general? Not,

certainly, to give up the pursuit of rigour, nor precipitously to abandon the relevance-

based, ad hoc test collection model. But nor is it to idolize methodological rigour

blindly. Rather, the need is to be practical, flexible, and enterprising. The achieve-

ments of methodologically developed fields should be used as a source of tools, exam-

ples, and experience, to sharpen the empirical edge of less experimentally developed

disciplines. The innovative should be consciously preferred, and the stale consciously

deprecated, because we work in an area where technology and applications become

dated very quickly.

In other words, it is perhaps time for us to measure something new.



Appendix A

Proofs

A.1 Standardized score limits

A.1.1 Maximum standardized score of reference system

Proposition A.1 The maximum absolute standardized system-topic score that a ref-

erence system can achieve is
√
n− 1, where n is the number of reference systems

(Section 4.3).

Proof.

Let si be the raw score achieved by reference system i. Consider the situation

in which n − 1 reference systems achieve one score, x: si = x, i ∈ {1, . . . , n −
1}; and the remaining reference system achieves another score, y: sn = y, y 6= x.
The standardized score s′n is the maximum absolute score achievable by any reference

system; this will be proved later.

We wish to calculate the standardization score that system n achieves:

s′n =
y − s̄

σ(s)

=
y − s̄

√

1
n

∑n
i=1(si − s̄)2

(A.1)

=

√

n(y − s̄)2

(y − s̄)2 + (n− 1)(x− s̄)2
(A.2)

Now:

s̄ =
(n− 1)x

n
+

1

n
y

so:

x− s̄ =

(

1− n− 1

n

)

x− y

n

=
1

n
(x− y) (A.3)
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and:

y − s̄ =

(

1− 1

n

)

y − n− 1

n
x

=
n− 1

n
(y − x) (A.4)

Substituting Equation A.3 and A.4 in Equation A.2 gives:

s′n =

√

√

√

√

n
(

n−1
n

)2
(y − x)2

(

n−1
n

)2
(y − x)2 + n−1

n2 (x− y)2

=
√
n− 1

as required (note that (x − y)2 = (y − x)2). The positive root is taken if y > s̄ (see

steps A.1 and A.2 above); the negative if y < s̄.
Thus, when all reference systems but one achieve the same score, the standardized

score of the other is ±
√
n− 1. The final step is to prove that this situation is the one in

which the maximum absolute standardized score is achieved.

Consider an alternative set of scores, t, with the same mean score t̄ = s̄ and the

same maximum raw score tn = sn. (Note that because the maximum standardized

score of s depends solely on n, we can always find an equivalent set of scores s∗

having the desired relationship to any set of scores t.) We wish to prove that s′n ≥ t′n.
Now:

s′n =
sn − s̄

σ(s)

while

t′n =
tn − t̄

σ(t)

=
sn − s̄

σ(t)

Thus, to prove that s′n ≥ t′n, we need only prove that σ(s) ≤ σ(t), or in other words

that the minimum standard deviation for t, given the conditions stated above, is that

ti = tj for all i, j 6= n. This actually follows from Jensen’s inequality and the fact that

σ(s) is a convex function.

For instance, consider the case that t differs from s in having one value tk < si.
Let the difference si − tk be d. Therefore, ti = si + d/(n− 2), i 6∈ {n, k}. Now:

σ(s) =
1

n

√

(sn − s̄)2 + (n− 1)(si − s̄)2

and:

σ(t) =
1

n

√

(tn − t̄)2 + (tk − t̄)2 + (n− 2)(ti − t̄)2

=
1

n

√

(sn − s̄)2 + (si − d− s̄)2 + (n− 2)(si +
d

n− 2
− s̄)2

Therefore, after some algebraic manipulation:

σ(t)2 − σ(s)2 =
1

n
· (n− 1) d2

n− 2
> 0 (A.5)
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(since d > 0 and n > 2), from which it follows (since σ(s) > 0 and σ(t) > 0) that
σ(s) < σ(t).

�

A.2 Tail dominates prefix in AO

In this section, we prove that the tails of infinite rankings dominate the heads in the

calculation of AO, as stated in Section 7.2.2.

Consider the weight given to each rank by the AO measure on lists of depth n.
Rank 1 is contained in each of the n subsets. In the first subset, it determines the entire

overlap; in the second subset, it determines half the overlap; in the third, a third of the

overlap; and so forth. Therefore the weight of rank 1 is:

WAO(1, n) =
1

n

(

1 +
1

2
+

1

3
+ . . .+

1

n− 1
+

1

n

)

=
1

n

n
∑

d=1

1

d
=

Hn

n

where Hn ≈ γ + lnn + 1/(2n) is the nth Harmonic number, and γ = 0.52771 . . .
is the Euler-Mascheroni constant (see Knuth (1997, Section 1.2.7)). It follows that

WAO(2, n) = (Hn −H1)/n, that WAO(3, n) = (Hn −H2)/n, and in general:

WAO(i, n) =
Hn −H(i−1)

n
.

If only the prefix k < n elements are available for each list, then the {1, . . . , k}
heads of each list have contributed to the similarity measure, but the {k + 1, . . . , n}
tails have not. The cumulative weight of the head is:

W head

AO =

k
∑

i=1

WAO(i, n) =
1

n

k
∑

i=1

(

Hn −H(i−1)

)

≈ 1

n
ln

nk

(k − 1)!

=
1

n

[

lnnk − ln(k − 1)!
]

≈ 1

n
[k lnn− (k − 1) ln(k − 1) + k − 1] (A.6)

≈ k

n
[lnn− ln k + 1]

=
k

n
ln

n

k
+

k

n
(A.7)

where the simplification at Equation A.6 uses Stirling’s approximation, lnx! ≈ x lnx−
x. Equation A.7 goes to 0 as n→∞ and k is fixed.

The cumulative weight of the tail, following a similar line of simplification, is:

W tail

AO =
n
∑

i=k+1

WAO(i, n) =
1

n

n
∑

i=k+1

(

Hn −H(i−1)

)

≈ 1

n
ln

n(n−k)(k − 1)!

(n− 1)!

≈ 1− k

n
ln

n

k
− k

n
(A.8)

which goes to 1 as n → ∞ and k is fixed. Therefore, for an infinite list, the weight of

the tail is 1, and of the head is 0, proving that the tail dominates the head.

�
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